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We present a brief review of Monte Carlo simulations of ferromagnetic Ising
lattices in a film geometry with surface magnetic fields. The seminal work of
Nakanishi and Fisher [Phys. Rev. Lett. 49:1565 (1982)] showed how phase
transitions in such models are related to wetting in systems with short range
forces; and we will show how theoretical concepts about critical and tricritical
wetting, interface localization-delocalization, and capillary condensation can be
tested in this and similar models. After reviewing the qualitative, phenome-
nological description of these phenomena on a mean field level, we will summa-
rize predictions of scaling theories. Comments will be made about the models
studied and simulation techniques as well as the specific problems that occur in
the relevant finite size scaling analysis. The resulting simulational data have
prompted considerable new theoretical efforts, but there are still unsolved
problems with respect to critical wetting. We will also present results for inter-
face localization-delocalization transitions in both Ising models and lattice
polymer mixtures in a thin film geometry and show that theory can account for
many, but not all, aspects of the simulations. In systems with asymmetric
boundary fields rather complex phase diagrams can result, and these should be
relevant for corresponding experiments. The simulational evidence is fully
compatible with the scaling predictions of Fisher and Nakanishi [J. Chem.
Phys. 75:5875 (1981)] on capillary condensation. To conclude we shall summa-
rize the major unanswered theoretical questions in this rich field of inquiry.

KEY WORDS: Ising models; Monte Carlo simulation; wetting transition;
capillary waves; finite size scaling.



1. INTRODUCTION: PHENOMENOLOGICAL DESCRIPTION OF

WETTING, INTERFACE LOCALIZATION-DELOCALIZATION,

AND CAPILLARY CONDENSATION

When a small amount of liquid on the surface of a solid substrate coexists
with saturated gas, we may either observe that this liquid exists in the form
of droplets touching the surface with a well-defined contact angle G (see
Fig. 1), or that the liquid is spread out into a homogenous film on the
surface. In the latter case one says that the surface is wetted by the fluid,
while in the former case the substrate surface is termed ‘‘non-wet’’ or
‘‘incompletely wet’’ (i.e., if 0 < G < p/2). It has been known for about
200 years that the contact angle is determined by a competition between
three interface free energies, namely the surface tension wall-gas swg, the
surface tension between wall and liquid swl, and the interface tension

Fig. 1. Schematic cross section of a (macroscopic) droplet of liquid, coexisting with satu-
rated gas, on a non-wet substrate surface showing: (upper part) the contact angle G and the
interpretation of Young’s equation in terms of mechanical equilibrium of the surface tensions
on the contact line; (middle part) A magnified view of the three-phase contact line where the
liquid-gas interface meets the substrate surface. On scales of a few molecular diameters this
contact line is rounded away, since the liquid-gas interface bends over into a flat liquid film of
microscopically small thickness l (of the order of a few molecular diameters). Note that the
shape of the profile near the three-phase contact line shown here qualitatively refers to the
simplest case—namely a situation close to a continuous wetting transition, as will be discussed
below. In contrast, the wet surface is coated by a liquid film of macroscopic thickness l Q .

(in practice l may remain finite because of gravity, finite size, etc.). (bottom part) Illustration
of a (first-order) wetting transition in terms of the temperature dependence of the various
interface free energies.
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between liquid and gas slg. (1) The formal relationship is given by Young’s
equation: (1)

cos G=(swg − swl)/slg if swg [ swl+slg. (1)

If the inequality in Eq. (1) is not fulfilled, there is no real solution for G,
and swg=swl+slg. By forming a liquid film of mesoscopic thickness that
uniformly coats the surface, the system lowers its free energy with respect
to the state in which it is incompletely wet. The wet surface thus formally
corresponds to G=0.

Since the interface free energies in Eq. (1) depend on temperature (and
possibly on other control parameters) it is quite natural to expect that by
suitable variation of parameters one can induce a transition where the state
of the surface changes from incompletely wet to completely wet. Thus, it is
surprising that a Landau-type theory of such a wetting transition was first
proposed only about 25 years ago. (2) Figure 2 shows the resulting generic
phase diagram and (coarse-grained (3)) density profile, and the variation of
the surface excess density rs in various situations is also drawn schemati-
cally. Here it is implied that the wetting transition, that is observed when
the temperature T is raised through Tw along a path where one stays with
the bulk density r exactly at the gas branch r (1)

coex of the coexistence curve
(by controlling the gas pressure or the chemical potential m=mcoex(T)), is a
first-order transition. With a suitable choice for the interactions between
the fluid particles and the wall, it is also possible to have a second-order
wetting transition (‘‘critical wetting’’). (4–6) In this case, there is no prewet-
ting line. The marginal case where the conditions have been fine-tuned such
that the prewetting line just starts to disappear, i.e., the prewetting critical
point and the wetting transition coincide, corresponds to a ‘‘tricritical
wetting transition.’’ Approaching Tw along the coexistence curve from
below, the thickness of the fluid film absorbed on the wall diverges to
infinity in a continuous fashion, while for a first-order transition l is still
finite as T Q T−

w and then jumps discontinuously to infinity. In Section 2.1.
we shall see how this behavior and an explicit description of the density
profiles (shown schematically in Fig. 2) emerge from a Ginzburg–Landau-
type theory.

From the viewpoint of thermodynamics, both wetting and prewetting
transitions can be considered as singularities of the surface excess free
energy of the fluid, fwg(T, m). At this point, it is of interest to recall that a
description of surface phase transitions in terms of the singular behavior of
a surface excess free energy contribution of a semi-infinite system has also
been discussed for the surface critical behavior of Ising ferromagnets. (7)

Figure 3 presents the associated phase diagram. (7, 8)
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Fig. 2. (right part) Schematic phase diagram of a semi-infinite fluid in contact with a wall;
(left part) corresponding profiles of the coarse-grained local density r(z) as function of the
distance z from the wall at z=0. The interface distance l from the wall in Fig. 1 may be iden-
tified as the location of the inflection point in the profile. In the temperature (T)-density (r)
plane, the coexistence curve separates saturated gas with liquid in the bulk. The enclosed two-
phase region ends at the bulk critical point (Tcb). The wetting transition is a singularity of the
surface excess free energy associated with the wall and occurs at a temperature Tw along the
gas branch of the coexistence curve. The corresponding density profile may change from a
non-wet state of the surface (surface excess density rs, the integral of the shaded region, being
finite) to a wet state either continuously (‘‘critical wetting’’) or via a discontinuous jump at Tw.
In the latter case, a further discontinuity at the ‘‘prewetting transition’’ occurs in the one-
phase region, ending at a prewetting critical temperature Tpre

c . The figure shows (lower part)
the schematic ‘‘adsorption isotherms’’ for ‘‘complete wetting’’ of the wall (when the pressure p
of the gas approaches its value pcoex at the liquid-gas coexistence curve) and a further discon-
tinuity at the prewetting transition for Tw < T < Tpre

c . In contrast, for T < Tw (surface non-wet)
rs reaches a finite limit for p Q pcoex.

As is well known, the Ising model in a magnetic field H can be rein-
terpreted in terms of a lattice gas model in a chemical potential. This is
done by relating a density variable ci (ci=1 if a lattice site i is occupied
by a fluid particle and ci=0 if it is empty) to an Ising spin Si= ± 1 by
ci=(1+Si)/2. In terms of the phase diagram of the bulk fluid in Fig. 2,
phase coexistence between liquid and gas occurs for H=0, and the particle-
hole symmetry of the lattice gas implies a mirror symmetry of the bulk
phase diagram along the critical density rc=OciPT=Tc

=1/2. Therefore, it
is natural that wetting phenomena (tacitly restricting attention to systems
with short range forces between the fluid particles and the wall) can be
described by an Ising Hamiltonian appropriate for a semi-infinite lattice
(the coordinate z being restricted to z \ 0). We represent the wall by the
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Fig. 3. Surface phase diagram of a Ising ferromagnet with nearest-neighbor interaction J in
the bulk and coupling Js in the surface plane, and zero surface field H1=0 as a function of
temperature T. If D=Js/J − 1 exceeds the critical value Dc, the surface orders at a tempera-
ture Tcs > Tcb where the bulk is still disordered. The point T=Tcb, Js/J=Jsc/J, where this
‘‘surface transition’’ at Tsc merges with the bulk transition at Tcb, is called the ‘‘special transi-
tion’’ or ‘‘surface-bulk multicritical point.’’ Note that D − Dc can be interpreted as an inverse
of an ’’extrapolation length’’ (8) denoted as l. From Binder. (8)

plane z=0, assuming then that its physical effect can be modeled by a
surface magnetic field H1 acting only on the spins in the first lattice plane
(n=1) adjacent to the wall, and by a different choice of the exchange
interaction Js in the plane, as depicted in Fig. 3. Thus, this Hamiltonian
can be written as

H(s · i)
Ising=−J C

Oi, jP bulk
SiSj − Js C

Oi, jP ¥ plane n=1
SiSj − H C

i
Si − H1 C

i ¥ plane n=1
Si

(2)

and obviously for H=0, H1=0 it contains the problem discussed in
Fig. 3 as a special case.

At this point we mention that for the case H=0 but H1 ] 0 and
D < Dc in Fig. 3 (D=Dc corresponds to JS=JSC in Eq. (2)) an additional
type of surface transition occurs, which describes critical adsorption at
walls for the liquid-gas critical point. (11,12) When H1 ] 0, then at T=Tc

there exists a non-zero magnetization at the surface of an Ising ferromagnet
also for D < Dc, similar to the case D > Dc and H1=0, where the ‘‘extraor-
dinary transition’’ (Fig. 3) occurs. Unlike the latter, this so-called ‘‘normal
transition’’ (H1 ] 0 and D < Dc) can be easily realized in fluids and binary
mixtures. (9, 10) It turns out, that the critical behavior of the extraordinary
and the ‘‘normal transitions’’ are identical. (11, 12) Note that a fluid that
undergoes wetting invariably undergoes the ‘‘normal transition’’ at its
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surface for T=Tc and at the critical pressure p=pc or critical density
r=rc in the bulk.

An important advance in our theoretical understanding of wetting
phenomena was made by Nakanishi and Fisher (13) who clarified the rela-
tion between wetting and surface critical phenomena more precisely. As is
illustrated in Fig. 4, the surface critical temperature Tcs can be viewed as a
special point on the critical line of prewetting transitions Tpre

c =Tcs(H, H1),
and similarly the surface-bulk multicritical point is the (singular) endpoint
of the line of tricritical wetting transitions in the space of variables
(T, H=0, H1, Js/J) at Tcb. Thus, this picture shows in which regions of
the parameters T, H1, Js/J one can expect critical wetting or first-order
wetting, respectively. (14) A further consequence of this relation (13) between
surface critical behavior (7, 8) and wetting is the fact that the scaling proper-
ties of surface critical behavior (in the presence of the fields H Q 0 and
H1 Q 0) also fixes the critical exponents that describe the vanishing of the
critical fields H1c(T), H1t(T) of critical and tricritical wetting transitions as
T Q Tcb (see Section 2.3).

Figure 4 also emphasizes an important symmetry of the Ising model:
when we change the sign of all the spins {Si} and of the fields H and H1,
the Hamiltonian is left completely invariant. As a consequence, the parts of
the phase diagrams in Fig. 4 that are in the H=0 plane are symmetric

Fig. 4. Schematic phase diagrams for a semi-infinite Ising magnet in the vicinity of the bulk
critical point Tcb as a function of temperature T, bulk field H, and surface field H1. In the
shaded part of the plane H=0 the system is non-wet for T < Tc, while outside of it, for
T < Tc, it is wet. The wetting transition is shown by a thin line where it is second-order and by
a thick line where it is first-order. First-order prewetting surfaces terminate in the plane H=0
at the first-order wetting line. Critical and multicritical points are indicated in the figure. After
Nakanishi and Fisher. (13)
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around the line H1=0 (i.e., the temperature axis). Thus, wetting tran-
sitions occur for both positive and negative H1 , but it is important to
realize that wetting transitions with H1 < 0 belong to the branch of the
coexistence curve with positive magnetization, and transitions with
H1 > 0 belong to the branch of the coexistence curve with negative
magnetization. Since the mapping between the Ising magnet and the
lattice gas implies the correspondence between the magnetization m
of the magnet and the density r of the lattice gas according to r=
(1 − m)/2, only the case with H1 < 0 describes a wetting transition of a
liquid layer forming when a saturated gas is in contact with a wall. The
case with H1 > 0 then describes the opposite effect, i.e., the formation
of a ‘‘drying layer’’ of gas when a fluid at the coexistence curve (i.e.,
saturated with gas) is in contact with a wall that ‘‘dislikes’’ the fluid. In
the picture of the contact angle, Fig. 1, this corresponds to contact
angle G > p/2. In the phase diagram of Fig. 2, this would correspond
to taking a mirror image along the line r=rc (thus, one then expects
also a ‘‘predrying’’ line ending at a ‘‘predrying critical point’’ Tpre in
the bulk liquid; this is described by the first-order ‘‘prewetting’’ sheets
in the phase diagrams of Fig. 4 for positive H1—in Fig. 4 no distinction
in nomenclature between ‘‘wetting’’ and ‘‘drying’’ was made, and hen-
ceforth we also shall not make such a distinction speaking of ‘‘wetting’’
irrespective of whether physically a liquid or a gas layer form).

A very useful interpretation of the wetting transition is to consider it
as an ‘‘interface unbinding transition’’: in the non-wet state, the interface is
tightly bound to the wall, while in the wet state the interface is ‘‘free,’’ far
away from the wall. This description can be made explicit in terms of the
behavior of the effective interface potential Veff(l) describing the free energy
cost of placing a (straight) interface at the distance l from the wall.
Figure 5 presents a qualitative sketch that shows how this interface poten-
tial behaves at a second-order wetting transition and at a first-order
wetting transition, respectively. (4–6) In Section 2.2 this description and its
consequences will be worked out in more detail.

We now briefly discuss the extension of these considerations to the
case when the system is not semi-infinite, but rather we have to deal with a
thin film of thickness D, confined by two parallel surface planes. In terms
of an Ising model description, we may generalize Eq. (2) as follows

H (film)
Ising = − J C

Oi, jP bulk
SiSj − Js C

Oi, jP surfaces
SiSj

− H C
i

Si − H1 C
i ¥ plane n=1

Si − HD C
i ¥ plane n=D

Si (3)
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Fig. 5. Schematic variation of the effective interface potential Veff(l) for critical and
complete wetting (upper part) and for first-order wetting (lower part). Veff(l) describes the
excess free energy of having the interface a distance l from the wall as compared to the situa-
tion where l Q . at H=0 (the ‘‘completely wet’’ state). Equilibrium states are found from
minimizing this potential with respect to the interface position, dVeff(l)/dl|min=0. For T < Tw,
lmin is finite. For a second-order wetting transition lmin increases smoothly to infinity as T Q Tw

and for T > Tw a metastable non-wet minimum does not exist. Veff(lmin)=0 at Tw for a finite
value of lmin at the first-order wetting transition, and for a range of temperatures above Tw a
minimum with Veff(lmin) > 0, corresponding to a metastable non-wet state, still exists. The
equilibrium solution hence exhibits a discontinuous jump from a finite lmin to lmin Q . at Tw. If
a non-zero field H > 0 is present, the interface potential 3 Hl at large distances (for the case
H1 < 0 so that the wetting layer corresponds to a region of negative magnetization). There-
fore, a finite minimum position lmin is always found for T > Tw if H > 0. As H Q 0, we again
find lmin Q . (‘‘complete wetting’’).

Here we have specialized to the case where the change of exchange
constants is the same in both surface planes, while we still allow for differ-
ent surface magnetic fields, H1 ] HD. A particularly interesting situation is
the case of antisymmetric surface fields, H1=−HD, because then the
system may undergo an interface localization-delocalization transition in
zero external field H=0, see Fig. 6. (15)

If we would consider the corresponding semi-infinite system, and
approach the wetting transition temperature Tw(H1)=Tw(HD=−H1) from
below, interfaces would unbind either from the left wall or the right wall, as
described above. Note that with this antisymmetric choice of boundary
conditions the order parameter profile across the system exhibits only a
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Fig. 6. Schematic description of the interface localization-delocalization transition of an
Ising model confined between two walls a distance D apart, where a positive field H1 acts at
the left wall while a negative field HD acts on the right wall. For T < Tc(D) the interface is
bound either to the left or the right wall, and the average magnetization mfilm(D) of the film is
then non-zero. For Tc(D) < T < Tcb, however, the interface fluctuates (delocalized) in the
center of the film, and thus mfilm(D)=0 even though there is still a non-zero bulk magnetiza-
tion ± mbulk in an infinite system as well as locally in the film away from the interface. For
T > Tcb, however, the film is disordered (apart from the response to the surface fields near the
walls). The description of the interface in terms of a coordinate z=l(rF ), with rF being the
coordinates in the plane formed by the left wall, is also indicated. From Binder et al. (15)

single interface in equilibrium. Therefore this interface localization-delo-
calization phase transition is in a sense a finite size analog of the wetting
transition, and for D Q . the transition temperature Tc(D) approaches the
wetting transition temperature Tw(H1) rather than the bulk transition tem-
perature Tcb. (16) This is also made plausible by a consideration of the effec-
tive interface potential Veff(l) for this case (cf. Fig. 7). Superimposing a
potential of the type shown in Fig. 5 for the left wall at z=0, and a mirror
image of that potential for the right wall at z=D, one obtains potentials
which are symmetric around l=D/2, as drawn in Fig. 7. Depending on the
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Fig. 7. Schematic variation of the effective interface potential difference DVeff(l)=
Veff(l) − Veff(D/2) for thin Ising films of thickness D, for the second-order (upper part) and
first-order (lower part) interface localization-delocalization phase transitions.

character of the underlying wetting transition, one expects that either
second-order or first-order interface localization-delocalization phase tran-
sitions occur: in the second-order case, the two positions of the minima
(at l=lmin and at l=D − lmin, respectively) merge smoothly at l=D/2 as
T Q Tc(D) from below. This is the case that was assumed in Fig. 6, a con-
tinuous vanishing of the order parameter at Tc(D). However, a discontin-
uous first-order type behavior is also possible, and then the position of the
minimum lmin increases only to lc

min (or decreases only down to D − lc
min,

respectively) at Ttrip(D) where the minimum at D/2 then takes over.
The discussion of interface localization-delocalization presented so far

is restricted to the case H=0, and indeed in the second-order case there is
no transition for H ] 0. However, this is not true in the first order case
since remnants of the prewetting transition lines that existed for the semi-
infinite case do still exist for the thin film, and in the space of variables
(T, H) these (first-order) transitions merge at the point H=0, T=Ttrip(D),
thus producing a triple point. This case becomes of practical interest when
we remember a further physical interpretation of the Ising model, namely
as a model for a binary mixture (A, B) in which spin down may represent
species A, and spin up species B. In fact, in a thin film of thickness D of a
binary mixture on a substrate, it is quite common that a layered geometry
of a phase-separated state is realized when the substrate energetically
prefers one component, while the other surface (e.g., against air or vacuum)
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favors the other component. The magnetic field H of the Ising model
translates into the chemical potential difference Dm between the species,
and the magnetization m is related to the relative concentration f=fA of
the mixture, f=(1 − m)/2. In this case it is natural, (17, 18) of course, to
discuss how the properties of the film change with temperature keeping its
concentration constant rather than Dm. This is illustrated in Fig. 8 for the
case of a mixture that in the bulk is strictly symmetric, assuming strict
antisymmetry of the surface forces (i.e., H1=−HD) as well. Then, the con-
centration that corresponds to the triple point is ftrip=1/2, but it is of
interest to consider films that have different concentrations. Figure 8 indi-
cates qualitatively that even above the bulk critical temperature we expect

Fig. 8. Schematic concentration profiles f(z) of a binary mixture across a thin film of
thickness D, at the critical concentration of the thin film, f=fc(D) < 1/2, at three different
temperatures (upper part). The lower part shows the phase diagram of the thin film, in
the canonical ensemble {(T, f) plane, left} and in the semi-grandcanonical ensemble
{(T, Dm) plane, right}. From Binder et al. (18)
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some surface enrichment of the preferred species near the appropriate
walls, but this surface enrichment is restricted to distances of the order of
the bulk correlation length tb, which for T ± Tcb is much less than D
except for ultrathin films. But when T approaches Tcb, tb grows and ulti-
mately becomes comparable to D. This also means that the system forms
an interface from the A-rich side of the film to the B-rich side which has a
width of the same order as the film thickness. Below Tcb, tb decreases again,
and one can distinguish a layered structure with an A-rich domain and a
B-rich domain, separated by an interface whose width is much smaller than D.
The concentrations inside the domains resemble the values of the concen-
trations f (1)

coex, f (2)
coex at the two branches of the coexistence curve in the bulk,

and the thickness of the domains is given by the lever rule, in order to
satisfy the overall concentration of the film that has been chosen. The
condition, that the overall concentration is fixed, enforces a lateral phase
separation, in the directions parallel to the wall two different phases must
coexist. For the example shown, and temperatures Ttrip(D) < T < Tc(D),
one phase is a state with an interface bound to the wall at z=0, whereas
the other phase is a state with a delocalized interface, almost in the middle
of the film. When one crosses Ttrip(D), a second transition occurs, to
another state of lateral phase separation. In the one phase the interface is
bound to the left wall, and in the other phase the interface is bound to the
right wall. While in the semi-grand canonical ensemble of the mixture (with
Dm=const) only a single phase transition is always encountered when T is
varied, we have here in general two successive transitions. Only when one
chooses the concentration ftrip of the triple point, will one go to the phase-
separated state with interfaces bound to both walls in a single transition
(Fig. 9). Thus, we emphasize that the consideration of different systems
(Ising magnets vs. liquid-gas systems or binary mixtures) in thin film
geometry is not just a trivial exercise but involves different physics.

The finding that the critical temperature Tc(D) for antisymmetric
boundary conditions is unrelated to Tcb, see Figs. 7–9, irrespective of the
thickness D of the film as long as D < ., seems paradoxical at first sight.
One must keep in mind, however, that near Tcb there is indeed a transition
to a kind of ‘‘longitudinal phase separation’’: i.e., two domains of opposite
sign of the order parameter form, separated by an interface running paral-
lel to the walls, as sketched qualitatively in Fig. 6. This transition is gradual
(Figs. 8 and 9) and not associated with any singularity in the thermody-
namic potential, and, consequently, it does not show up in the phase
diagram. Of course, the extent of this rounding gets the smaller the larger
D becomes. Finite size scaling arguments, to be discussed later, yield the
result that the temperature region DT over which the transition is smeared
out scales as DT/Tcb 3 D−1/n, where n is the critical exponent of the
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Fig. 9. Schematic concentration profiles f(z) across a thin film of thickness D at the bulk
critical concentration fcrit=1/2, assuming that the left wall energetically prefers A and the
right wall prefers B with the same strength, at several temperatures (left part). The right part
shows the corresponding schematic phase diagram in the semi-grandcanonical ensemble. For
further explanations see text. From Binder et al. (18)

correlation length in the bulk. Hence, for large D it hence may be difficult to
distinguish experimentally this rounded transition from a true thermo-
dynamic phase transition. It is also interesting to discuss the case of
antisymmetric boundary conditions in an enlarged parameter space that
includes a gradient DH in the field across the film. (19, 20) Then the critical
temperature Tc(D) discussed above becomes the end point of a critical line
Tc(D, DH), and for sufficiently large DH the difference Tcb − Tc(D, DH) also
becomes very small and is again proportional to D−1/n. Since it is not straight-
forward to apply a variable DH in the laboratory, and—unfortunately—we
are not aware of any simulations addressing this extended model, we shall
not discuss it any further in this article.

Of course, the case of strictly antisymmetric surface fields (H1=−HD)
is a simplifying idealization, and one really needs to consider the case
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which lacks any particular symmetry of the surface fields, (21) however we
shall defer a discussion of this situation to Section 3.6. But there is another
generic case, H1=HD, i.e., confinement of the system by two walls of the
same kind. In the context of liquid-gas transitions in confined geometry,
this is known as ‘‘capillary condensation.’’ (22–28) It was already discovered in
the 19th century that in a capillary the condensation of a gas occurs at a
lower pressure p than the coexistence pressure pcoex necessary to induce
condensation in the bulk. Again, here we are not concerned with a descrip-
tion of this behavior in any chemically realistic atomistic detail but rather
follow the pioneering studies of Fisher and Nakanishi (24, 25) once more
and base our treatment on the thin film Ising Hamiltonian, Eq. (3). For
simplicity, we now consider the case where the corresponding semi-infinite
system has only a second-order wetting transition. This transition for finite
film thickness is rounded off, and then the liquid-gas transition in the bulk
of the thin film is the only transition that needs to be considered. The case
where analogs of the prewetting transitions still exist for the film (29) will be
considered in Section 3.5 (cf. Fig. 43). In the present case, the resulting
phase diagram is shown in Fig. 10. While in the bulk lattice gas system
(D Q .) the condensation from gas to liquid occurs along the line H=0
that ends in the bulk critical point Tcb, in the thin film this transition line is
now shifted to negative values of the field, which describes the effect men-
tioned above that condensation occurs at a lower pressure than in the bulk.
Simple bond-counting arguments show that the transition line at T=0
starts at H=−2H1/D, but estimating the location Tc(D), Hc(D) of the
critical point is a non-trivial matter (Section 3.5). Scaling arguments (24)

that yield the D-dependence of the shift of Tc, DTc=Tcb − Tc(D) and
DHc=Hc(D) (cf. Fig. 10) will be summarized in Section 2.3.

In the next sections, we shall enhance this qualitative phenomenologi-
cal description with more detailed arguments, including the treatment by a
Ginzburg–Landau-type mean field theory (Section 2.1.), and calculations

Fig. 10. Schematic phase boundary for an Ising film of thickness D with a field H1 acting on
both surfaces in the plane of temperature T and bulk field H.
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based on the effective interface Hamiltonian (Section 2.2). Effects of
thermal fluctuations will be addressed, introducing the concept of capillary
waves (Section 2.2) and summarizing the main predictions resulting from
scaling arguments and renormalization group treatments (Section 2.3).
Monte Carlo results will then be reviewed in Section 3, first briefly describ-
ing the techniques of simulation (Section 3.1) and finite size scaling analysis
(Section 3.2), and then presenting results for critical wetting (Section 3.3),
interface localization-delocalization and capillary condensation in Ising
models (Sections 3.4 and 3.5) and in polymer mixtures (Section 3.6).
Finally, Section 4 summarizes our conclusions.

At this point, we have to mention that a variety of closely related
topics will not be treated in this article: e.g., we shall not review computer
simulations studying the shape of sessile droplets (Fig. 1, top), see, e.g.,
refs. 30–32, and corresponding results on the line tension, (33–37, 53) and the
behavior of the interface near the three-phase contact line. For instance, it
has been predicted (36, 38) that near first order wetting transitions the quali-
tative behavior differs from the sketch in Fig. 1, because the interfacial
profile intersects the dashed asymptote which forms the contact angle G.
To our knowledge, this feature has not yet been confirmed by simulations
(the nanoscopic size of the simulated droplets (30–32) precludes even accurate
estimates of G). Also, we will not consider wetting on cylinders (39–41) or
in cylindrical tubes (42) or other non-planar geometries. As a final point of
this disclaimer, we are also not concerned with wetting of a third phase
at interfaces between coexisting phases, wetting near grain boundaries or
defect planes, etc. (43, 44) as well as wetting near ‘‘triple junctions’’: (45) only
wetting at walls (adsorbates in contact with substrates or so-called
‘‘spectator phases’’ (5, 45)) will be considered.

2. THEORY

2.1. Ginzburg–Landau Type Mean Field Theories

A well-known method to derive the Ginzburg–Landau-type mean field
theory appropriate for the models defined by the Hamiltonians Eqs. (2)
and (3) starts from a layer-wise molecular field approximation. (7, 8, 46–48)

(Note that the result is much more general than this derivation.) Thus we
consider a lattice model, assuming that the external wall is the plane z=0
in our coordinate system, and denote the coordination number of lattice
sites in planes parallel to this plane as q||, while the coordination number in
the positive z-direction perpendicular to these planes is q+ (e.g., q||=4 and
q+ =1 for the simple cubic lattice). We label the plane directly adjacent to
the external wall (i.e., the surface plane of our system) by an index
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n=1, and the planes are indexed consecutively, n=2, 3,... as we move
away from the wall. In the molecular field approximation, the average
magnetization mn=OSiP of spins whose lattice site i is in the nth layer then
is given by

mn=tanh[(H+q||Jmn+q+ Jmn − 1+q+ Jmn+1)/kBT], n \ 2 (4)

m1=tanh[(H+H1+q||Jsm1+q+ Jm2)/kBT], n=1 (5)

Assuming that the temperatures of interest are close to Tcb and the
fields H and H1 are small enough such that |mn | ° 1 for all n, we can
expand artanh(mn) % mn+m3

n/3 and also replace differences by differentials,
denoting mn=m(z),

mn ± 1=m(z) ± a
“m(z)

“z
+

a2

2
“

2m(z)
“z2 , (6)

a being the lattice spacing. As discussed in ref. 48, Eq. (6) is only accurate
for large correlation length tb, since it amounts to approximations equivalent
to putting exp(a/tb) % 1+a/tb.

Accepting Eq. (6), we than replace Eqs. (4) and (5) by a second-order
non-linear differential equation. Using henceforth a=1 as our unit of
length, we obtain

51 −
(q||+2q+ ) J

kBT
6 m(z)+

1
3

m3(z) −
q+ J
kBT

“
2m(z)
“z2 =

H
kBT

, (7)

supplemented by a boundary condition at the surface, z=0,

51 −
q||Js+q+ J

kBT
6 m(0)+

1
3

m3(0) −
q+ J
kBT

“m(z)
“z

:
z=0

=
H+H1

kBT
. (8)

Due to the non-linear character of Eqs. (4) and (5), the results
obtained from the discrete set of difference equations are not equivalent to
the results following from the differential equation, Eqs. (7) and (8). For all
temperatures T < Tcb Eqs. (4) and (5) yield an infinite sequence of layering
transitions, (14, 49) when H Q 0 while Eqs. (7) and (8) yield at most a single
transition (prewetting) followed by complete wetting. (46, 47) But a treatment
of the problem beyond mean field implies (14) that the infinite sequence of
layering transitions in the Ising model can only occur for T < TR, where TR

is the roughening transition temperature of an interface between coexisting
bulk phases. (50, 51) For T > TR, the interface is a smooth object, delocalized
due to capillary wave excitations, (4–6, 8, 51–56) and under these circumstances
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the description in terms of Eqs. (7) and (8) is more appropriate than by
Eqs. (4) and (5). Being interested in the modelling of liquid-gas transitions
and liquid-liquid unmixing, where interfaces always are smooth, we know
that the localization of interfaces at lattice planes as it occurs in the Ising
model for T < TR really must be considered as a lattice artefact. Thus, we
shall only be concerned with temperatures sufficiently above TR in this
article, such that this problem will not play any role.

It is convenient to rescale Eqs. (7) and (8) in terms of the bulk magne-
tization mb and the correlation length tb, noting that in the molecular field
approximation kBTcb=(q||+2q+ ) J. Using the standard results (8)

mb=`3(1 − T/Tcb) , tb== q+

2(q||+2q+ )
(1 − T/Tcb)−1/2, (9)

we define rescaled fields h, h1 as follows

h=
H

`3 kBTcb

(1 − T/Tcb)−3/2, h1=
H1

`3 kBTcb

(1 − T/Tcb)−3/2. (10)

The boundary condition at the surface will then involve a parameter g,

g=1+2t2
b
5q||Js

q+ J
− 1 −

q||

q+

6 . (11)

With the rescaled order parameter m and the rescaled distance z from
the surface defined as

m(z)=m(z)/mb, z=z/(2tb), (12)

Eq. (7) turns into a rescaled equation for the bulk that no longer contains
any parameter,

1
2

d2m(z)
dz2 +m(z) − m3(z)+h=0. (13)

The only parameter appears in the boundary condition,

c
dm(z)

dz
:
z=0

+gm(0)+h+h1=0. (14)

Here the third order term of Eq. (8) was already omitted, because it yields
only unimportant corrections to the leading behavior. We have also
allowed for a general coefficient c (instead of tb) for the first term of
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Eq. (14). As is well known, (8) Eqs. (13) and (14) can also be thought of as
the result of minimizing an effective free energy functional,

1
2tbA

d DF[m(z)]/kBTcb

dm(z)
=0, (15)

where

DF

kBTcb
=F

.

0
dz 31

2
5dm(z)

dz
62

− m2(z)+
1
2

m4(z) − hm(z)

−
1
c
5h1m(z)+

1
2

gm2(z)6 d(z)4 . (16)

Near Tcb the correlation length tb ± 1, and therefore |g| ± 1, Eq. (11),
if we are not very close to the surface-bulk multicritical point, (7, 8, 57) which
in the molecular field approximation occurs for (ref. 7)

JSC/J=1+q+ /q||. (17)

Since the approximations made in Eqs. (6)–(8) require that the limit
tb Q . is taken first, the 1 on the rhs of Eq. (11) is actually negligible
against the other term, and, hence, the multicritical value of g is g=0. The
sign of g is controlled by the sign of Js − Jsc.

In the absence of fields h, h1, we note that g > 0 for JS > JSC; then,
Eqs. (13) and (14) show that the surface layer is ordered—the surface
orders before the bulk. (7, 8, 35) Conversely, g is negative for JS < JSC, which is
the situation considered in the following. At this point we emphasize,
however, that Eqs. (13)–(16) can be justified on much more general
grounds than by the present derivation based on Eqs. (4) and (5), if we do
not insist on the particular relations Eqs. (9), (11), and (17), and allow
h1/c, g/c in Eq. (16) to be phenomenological parameters. Before we show
how Eqs. (13)–(16) are used to describe wetting phenomena, we recall how
Eq. (13) is solved to describe the profile of an interface between two bulk
phases, of opposite sign of the order parameter, that coexist for h=0. I.e.,
the equation

1
2

d2m(z)
dz2 +m(z) − m3(z)=0 (18)

must be solved with the boundary conditions

m(z Q ± .) Q ± 1, lim
z Q ± .

dm

dz
=0. (19)
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This problem is formally analogous to a problem in classical mechan-
ics, namely the motion of a point particle of unit mass in a potential
U(x)=x2 − x4/2, ẍ=−dU/dx, if we identify position x with m and time t
with z. The energy of this problem is then chosen to be E=1/2, so the
particle starts at t=−. at the left potential well with zero velocity, and
comes to rest again for t Q . at the right potential well. The velocity
ẋ (corresponding to the slope dm/dz of the interface profile) is maximal
for x=0 (m=0, respectively). Since conservation of energy implies
E=U+ẋ2/2=const, multiplication of Newton’s law by ẋ and integra-
tion over time from t=−. to t yields ẋ2/2=−(x2 − 1)+(x4 − 1)/2=
(1 − x2)2/2. Analogously, we find the scaled order parameter profile is
given by

[1 − m2(z)]2=(dm/dz)2, m(z)=tanh(z), (20)

or transforming back to the original coordinates

m(z)=mb tanh(z/2tb). (21)

This shows that in mean field theory the intrinsic width of the interface is
w0=2tb.

The interface free energy, defined as the excess contribution of a
system containing one interface relative to that of a homogeneous system
where m(z)=mb everywhere, can be shown to be (normalized per unit area
of the interface area A)

s=
DFint

kBTA
=

1
3

m4
btb F

+.

−.

dz 1dm

dz
22

=
2
9

m4
btb. (22)

If we define a critical exponent l and amplitude ŝ of this interface
tension via s=ŝ(1 − T/Tcb)l, this mean field theory yields l=3/2.

Now for a problem of a free surface of a semi-infinite system which is
at phase coexistence (h=0) in the bulk, the problem is still described by
the first equation of Eq. (20), since Eqs. (13) and (18) are identical. The
order parameter profile of the free surface problem is still of the form
m(z)= ± tanh(z+z0), for a state in the regime where the wall is incomple-
tely wet. Then z0 (and the sign of the above solution) have to be chosen
such that the boundary conditions at z=0 and z Q . are fulfilled. For the
wet case the profile has the form m(z)= ± coth(z+z0) instead, cf. Fig. 11.
Note that the spin up—spin down symmetry of the bulk part of our Ising
model (cf. Eq. (3)) implies that both ‘‘wetting’’ and the opposite phenome-
non, ‘‘drying,’’ can occur. By ‘‘wetting’’ we denote here a macroscopically
thick film of up-spins, fluid atoms, for the lattice gas; B-atoms, for the

Monte Carlo Studies 1429



A-rich AB-mixture, etc. intruding at the wall. ‘‘Drying’’ means a film of
down-spins (gas layer at the surface of the ‘‘lattice fluid’’; A-atoms, for the
B-rich AB-mixture, etc.). The constants z0, z −

0 are then found from requir-
ing that “m(z)/“z= ± |m2(z) − 1| must also satisfy the boundary condition,
Eq. (14). In the wet (or dry) case, the boundary condition at z Q .,
m(z)=−1 (or m(z)=+1), is satisfied by adding to the solution m(z)=
± coth(z+z0) the solution m(z)= + tanh(z − zi) with zi Q . as well. From
a graphical analysis of these equations, the so-called ‘‘Cahn construc-
tion’’ (2) (Fig. 12) one derives the wetting phase diagram (see Fig. 13) which
displays both second-order and first-order wetting transitions, separated
by a wetting tricritical point. (47) We here only focus on the second-order
wetting transition, noting that then Eqs. (14) and (20) yield

m2(0) − 1=[h1+gm(0)]/c. (23)

Since m2(0)=1 at critical wetting (Fig. 12), we conclude that h1c=−g
(Fig. 13), and the constant z0 becomes

z0=−arctanh(m(0))=−arctanh 5h1c

2c
+= h2

1c

4c2+1 −
h1

c
6 , (24)

Fig. 11. Profiles of the normalized order parameter m(z) as a function of the rescaled dis-
tance z from the wall for different states of the surface and/or the bulk: wet (W), incompletely
wet (IW), incompletely dry (ID) and dry (D). From Puri and Binder. (47)
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Fig. 12. Plot of “m(z)/“z|z=0 versus m(0) for: (a) second-order wetting; (b) and a first-order
wetting. The solution consistent with the boundary condition is the intersection of the curve
|m2

c (0) − 1| with the straight line [h1+gm(0)]/c: In case (a) this solution is unique for all
choices of h1/c (for g/c fixed). Critical wetting occurs where the solution is at m(0)=+1; then
“m(z)/“z|z=0=0, and the interface is an infinite distance away from the surface. For h1 > h1c

the surface is non-wet while for h1 \ h1c the surface is wet. In case (b) the solution is unique
for h1 < h (1)

1s (only a non-wet state occurs) and for h > h (2)
1s (only a wet state occurs). For

h (2)
1s > h1 > h (1)

1s there are three intersections, denoted by A, B, C. B is always unstable, while
A is stable and C metastable for h1c > h > h (1)

1s ; and A is metastable and C is stable for
h (2)

1s > h > h1c. At h1c, where the exchange of stability between A and C occurs (i.e., the first-
order wetting) the shaded areas are equal. This construction is the surface counterpart of the
well-known Maxwell construction for the first-order liquid-gas transition in the bulk. Note
that for m(0) < − 1 the parabola continues to positive values, but this part is not shown here.
It would be needed to describe profiles that approach the gas density (corresponding to
m(0)=−1) from below. From Schmidt and Binder. (46)

which for h1 near h1c reduces to

z0 % − arctanh 51 −
h1 − h1c

2c(1 − h1/2c)
6 %

1
2

ln
h1 − h1c

(2c − h1)
+const (25)

This relation shows that the thickness of the wetting film diverges loga-
rithmically when one approaches the second-order wetting transition from
the non-wet side.

At this point we briefly discuss the argument of Cahn (2) that wetting
should always occur near a critical point: Since the Young equation (Eq. (1))
implies that at the wetting transition slg=swg − swl, and while one expects
that slg exceeds Ds=swg − swl at low temperatures, slg vanishes at Tcb with
a larger exponent than Ds. Hence the curves slg and Ds must cross each
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Fig. 13. Phase diagram of the Ginzburg–Landau model for wetting and drying in the space
of variables g/c and h1/c. Regions are labeled according to the stable static solution for those
parameters (metastable states, if any, are listed in brackets): wet (W), dry (D), incompletely
wet (IW) and incompletely dry (ID). Note that the phase diagram is symmetric around the
abscissa if the meaning of W and D is interchanged. Second-order phase boundaries are
shown as dashed lines and given by h1c= ± g( for g/c < − 2). First-order phase boundaries
are shown as dash-dotted curves; surface spinodals are shown as dotted curves, h (1)

1s =−g and
h (2)

1s /c=1+(g/2c)2, g > − 2c (upper half plane). Of course, the first order wetting transition
as well as the surface spinodals continue smoothly to the region g > 0, see, e.g., ref. 44, but are
not shown here in order not to complicate the labeling of the diagram. From Puri and
Binder. (47)

other in the critical region. In fact, Cahn (2) originally assumed that Ds

behaves like the order parameter Ds 3 mb in the bulk, but one uses rather
the surface order parameter: Ds 3 m1 3 (1 − T/Tcb)b1 with b1=1, and
using (see Eq. (22)) slg 3 (1 − T/Tcb) (du − 1) n (where, within mean field
approximation, du=4 is the upper critical dimension and (du − 1) n=3/2)
one would obtain (1 − Tw/Tcb)1/2 3 const from slg/Ds=1. However, as
discussed in detail by Iglói and Indekeu, (44) this relation for Tw is not always
supported by an explicit calculation within Landau theory.

In fact, Cahn (2) did not discuss at all the possibility of critical wetting,
he discussed first order wetting only. For this case Iglói and Indekeu (44)

obtained that Ds for T − T−
cb becomes a non-zero constant, which implies

that the distance of Tw from Tcb scales as H1 3 (JS − JSC)(1 − Tw/Tcb)3/2,
while the original Cahn result (with bulk exponent b=1/2) accidentally
holds for tricritical wetting: H1 3 (1 − Tw/Tcb)1 and JS=JSC.

Thus, although, the argument of Cahn (2) was wrong, his conclusion
that near a critical point wetting should always occur is supported by
Landau theory. (44) As discussed by Iglói and Indekeu, (44) critical point
wetting is connected with the presence of a non-zero surface order
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parameter at Tc. This order can be imposed by a surface field (‘‘normal
transition,’’ see Section 1) or occurs spontaneously (‘‘extraordinary transi-
tion,’’ see Fig. 3). In contrast, whenever the surface at Tcb undergoes an
‘‘ordinary transition’’ (which happens in the present model for JS < JSC and
H1=0 only), no wetting transition can occur. This relation between the
existence of surface order at Tcb and occurrence of wetting transitions is
useful to understand the relations between wetting at grain boundaries and
at walls. (44)

In this context, we mention that approaching a wetting transition at
phase coexistence (i.e., for H=0 in the present model) from the non-wet
side, the contact angle G vanishes continously for both first order and
second order wetting transitions. Noting that Ds and slg meet under a
finite angle in Fig. 1 (lower part), which describes a first order wetting
transition, the relations cos h % 1 − G2/2 and slg − Ds 3 1 − T/Tw yield
G 3 (1 − T/Tw)1/2. In contrast, for critical wetting. Ds and slg meet tan-
gentially at Tw, i.e., slg − Ds 3 (1 − T/Tw)2 and, hence, G 3 (1 − T/Tw). Of
course, these relations are born out explicitly by the present Landau theory.

Before we discuss the singular behavior of other quantities at the
wetting transition, we recall some further relations from general surface
thermodynamics. We note that the surface excess order parameter ms,
which can be defined in terms of the layer order parameters mn as (ref. 8)

ms= C
.

n=1
(mn − mb), (26)

can also be found as the derivative of the surface excess free energy with
respect to the bulk field, analogously to the order parameter mb in the bulk,

ms=−
“Fs(T, H, H1)

“H
:

T, H1

mb=−
“Fb(T, H)

“H
:
T

. (27)

Here both the surface free energy density Fs and bulk free energy
density Fb are normalized per lattice site of the basic semi-infinite Ising
lattice model, Eq. (2). The relation between Eqs. (26) and (27) is readily
understood by considering a thin film of thickness D in the limit D Q .:
then the total free energy of the film can be split in bulk and surface terms,
A being the area of a free surface of the film, (8, 57)

Ffilm(T, H, H1, D)
AD

=Fb(T, H)+
2
D

Fs(T, H, H1), D Q ., (28)

mfilm= C
.

n=1
mn=−

1
AD

“Ffilm(T, H, H1, D)
“H

:
T, H1, D

. (29)
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The factor 2 in Eq. (28) appears simply because there are two equivalent
free surfaces in this geometry. From Eqs. (27)–(29) we recognize that
mfilm=mb+2

D ms with ms=limD Q . ;D/2
n=1 (mn − mb), i.e., Eq. (26). The local

order parameter at the surface then results as a derivative of Fs with
respect to the local field H1 conjugate to it,

m1=−
“Fs(T, H, H1)

“H1

:
T, H

. (30)

It also is of interest to consider ‘‘susceptibilities,’’ defined in analogy
with the bulk response function

qb=
“mb

“H
:
T
=−

“
2Fb(T, H)

“H2
:
T
; (31)

but since there are two fields, three susceptibilities result:

qs=
“ms

“H
:
T, H1

=−
“

2Fs

“H2
:
T, H1

, (32)

q1=
“m1

“H
:
T, H1

=
“ms

“H1

:
T, H

=−
“

2Fs

“H“H1

:
T
, (33)

and

q11=
“m1

“H1

:
T, H

=−
“

2Fs

“H2
1

:
T, H

. (34)

Of course, the surface excess susceptibility can also be written
analogously to Eq. (26), in terms of susceptibility qn defined as response
functions to fields Hn acting solely in the nth layer, qn — (“ms/“Hn)T, H

=(“mn/“H)T, Hn

qs= C
.

n=1
(qn − qb) (35)

At a second-order phase transition in the bulk, quantities like mb and qb

exhibit singularities described by power laws involving the well-know
critical exponents (58) bb, cb and amplitudes B̂, Ĉ±

mb=B̂(1 − T/Tcb)bb, qb |H=0=Ĉ± |1 − T/Tcb |−cb. (36)

In Eq. (36), the ± signs refer to above (+) and below (−) Tcb respectively.
In analogy with Eq. (36) one now may define critical exponents associated
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with the singularities of the various surface quantities at a critical wetting
transition temperature Tw(H1), namely (4–6)

ms 3 (1 − T/Tw)−bs, m1 − m1(Tw) 3 (1 − T/Tw)b1 (37)

qs 3 |1 − T/Tw |−cs, q1 3 |1 − T/Tw |−c1, q11 3 |1 − T/Tw |−c11 (38)

Since the wetting transition temperature Tw=Tw(H1) depends on the
surface field H1, we can approach the wetting transition alternatively by
varying T at fixed H1 (as was implicitly assumed in Eqs. (37) and (38)), or
by varying the surface field H1 at fixed T. In the latter case the critical field
H1c(T) simply is the inverse function of Tw(H1), and the argument Tw − T in
Eqs. (37) and (38) can then simply be replaced by H1c − H1. Since the
surface excess magnetization ms is simply related to the rescaled interface
distance z0 from the wall as ms 3 tbmbz0, we conclude from Eqs. (25) and
(37) that bs=0 (logarithmic divergence) in mean field theory. With some
algebra one can also derive (46)

q̃1=
“ms

“h1

:
T
=[g−2c tanh(−z0)]−1 [1+tanh(−z0)]−1 3 (h1c −h1)−1, h1 Q h1c.

(39)

and one can also show that cs=1, c11=0 ( jump singularity) and b1=1. Of
course, Landau theory in the bulk (predicting bb=1/2 and cb=1) is
known to be, in general, rather unreliable due to the neglect of thermal
fluctuations. The actual critical exponents of systems with short range
forces differ from the predictions of Landau theory for system dimensio-
nalities d < dg=4. Similarly, we expect that fluctuation effects on criti-
cal wetting also may alter the critical behavior substantially, as will be
discussed in Section 2.3.

Of course, the Landau treatment can be extended from the semi-
infinite case (7, 8) discussed so far to the case of thin films with symme-
tric (24, 25) and antisymmetric (16, 59–61) boundary fields.

For simplicity, we first briefly describe the antisymmetric case at zero
bulk field H=0. Instead of Eq. (16) the (rescaled) free energy functional
becomes

1
2tbA

DF(D)
kBT

=F
+D/(4tb)

−D/(4tb)
dz 31

2
5dm(z)

dz
62

− m2(z)+
1
2

m4(z)4

−
1
c
5h1m(−D/(4tb))+

1
2

gm2(−D/(4tb))6

−
1
c
5hDm(D/(4tb))+

1
2

gm2(D/(4tb))6 (40)
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Here the origin z=0 was chosen in the center of the thin film, so the two
surfaces occur at z= ± D/2 or z= ± D/(4tb), respectively. The corre-
sponding Euler–Lagrange equation still is given by Eq. (13), with h=0 in
the present case, but instead of Eq. (14) (and the boundary condition
m(z Q .) Q ± 1) we now have

c
dm(z)

dz
:
z=−D/(4tb)

+gm(−D/(4tb))+h1=0, (41)

− c
dm(z)

dz
:
z=D/(4tb)

+gm(D/(4tb)) − hD=0. (42)

After multiplication of the Euler–Lagrange equation with mŒ — dm/dz

one can integrate Eq. (13) once to find

1dm

dz
22

=(m2(z) − 1)2 − 4 Dp(D) (43)

where the integration constant was denoted as 1 − 4 Dp(D), for the sake of
consistency with the notation of Parry and Evans. (59) For D Q ., when we
stay in the phase where the interface between the regions of positive and
negative order parameter is in the center of the thin film (cf. Fig. 6), we
expect that (dm/dz)2

Q 0 for m(z)= ± 1 (corresponding to the flat regions
around ± mb in Fig. 14), and thus the constant Dp(D Q .) Q 0. With
some algebra one can show that for D Q .

Dp % 2C(1 − m̃.) exp(−D/2tb), (44)

where the constant C has a numerical value close to 4, and the quantity m̃.

is an abbreviation for the local order parameter on the right surface
m(z=D/4tb) in the limit D Q ., as long as m̃. > 1. Note that in the semi-
infinite system, the transition from the wet state to the non-wet state occurs
when m̃.=1, while in a thin film we reach a phase transition (where the
antisymmetric profile of m(z) shown in Fig. 14 becomes unstable (59)) for a
value of m̃. slightly larger than m̃.=1, namely, at a value of the field |h1 |
slightly larger than |h1c |. This field can be identified (59) from the maximum
Dp(D) as functions of D. With some algebra one finds that there is a shift
of this transition point relative to the wetting transition given by (59)

|h1c(D) − h1c(.)| 3 exp(−D/2tb) for D Q .. (45)

Another interesting consequence that can be derived from
Eqs. (40)–(43) is the fact that in this confined situation of Fig. 14 the inter-
facial width w0(D) is reduced in comparison with that for a free interface
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Fig. 14. Schematic order parameter profiles m(z) versus z, for a thin Ising film of thickness
D confined between walls at z=−D/2 and z=+D/2. A negative surface field H1 acts on the
left wall and a positive surface field HD=−H1 acts on the right wall. The field |H1 | is large
enough that the local magnetization m0(D) at the wall exceeds the bulk magnetization mb, and
an interface (of width w0(D)) forms in the center of the film. If D gets small (lower part),
a flat part in the profile near ± mb does no longer occur, and then the width w0(D) becomes
substantially reduced in comparison to its asymptotic value w0(D Q .)=2tb. From Binder
et al. (61)

between bulk phases in a macroscopically thick film. (61) This ‘‘squeezing’’
of a confined interface can be approximately described as (61)

w0(D)
w0(.)

% =1+16
h1 − h1c

c

exp(−D/2tb)
1+h1c/(2c)

. (46)

However, as we shall discuss below, it becomes difficult to identify an
‘‘intrinsic’’ profile and an ‘‘intrinsic’’ width w0 of an interface when one goes
beyond mean field theory and allows for capillary-wave type fluctuations
of the local position of the interface center in directions parallel to the
interface itself.

When we now include the term − hm(z) involving the bulk field in
Eq. (40), and consider the case of symmetric wall fields h1=hD, we recover
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the Landau theory of capillary condensation as treated by Nakanishi and
Fisher. (25) In the general case, this problem can only be solved numeri-
cally. (25) The problem is analytically soluble only for the case of very weak
wall fields h1 Q 0, as far as the shift of the critical point relative to the bulk
is concerned (cf. Fig. 10). One finds (25)

Tc(D) − Tcb 3 − D−2, Hc(D) 3 − H1D−2 (47)

and the magnetization at the midpoint of the profile (i.e., at z=0) is
related to the magnetization at the surface m1=m(z= ± D/4tb) by (25)

mmid — m(z=0)=−132
9p

− 12 m1. (48)

2.2. The Effective Interface Hamiltonian;

Capillary Waves

The mean field theory, described in the previous subsection, is suitable
for a description of phase transitions in the bulk as well as surface and
interface behavior within a common framework. Being interested in inter-
face unbinding transitions such as wetting phenomena in semi-infinite
geometry or interface localization-delocalization in films with competing
walls, we note that the temperatures of interest typically are not close
to Tcb, however. Then the length scales of interest, such as the mean distance
of an interface from the wall to which it is bound, and the correlation
length t|| of fluctuations of its local distance (Fig. 15) are much larger than

Fig. 15. Coarse-grained description of a liquid-gas interface, where the ‘‘intrinsic’’ profile
and local structure of the interface are disregarded, and the interface is treated as an ‘‘elastic
membrane’’ at position z=l(x, y). This approximation is also called the ‘‘sharp kink’’
approximation for the interface profile.
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the correlation length tb of order parameter fluctuations in the bulk (or
the ‘‘intrinsic width’’ w0=2tb according to mean field theory, as argued
above). Under such conditions, it is tempting to disregard variations of the
order parameter in the bulk, away from the interface, altogether, and focus
on the local position l(x, y) of the interface as the single degree of freedom
(Fig. 15). In other words, one attempts to provide a description of the
liquid-gas interface in terms of the capillary wave Hamiltonian (rF=
(x, y)) (4–6, 52–56, 59, 62)

Heff({l})=F drF 5s

2
(Nl)2+Veff{l(rF )}6 (49)

where s is just the liquid-gas interface tension slg. Here s is treated as a
given input-parameter to the theory but, in principle, it has to be calculated
from a more microscopic theory (e.g., Landau theory, Eq. (22)). Actually
the Hamiltonian describes the excess free energy of the system associated
with a fluctuating interface at positions {l(rF )} relative to a perfectly flat
interface at distance l Q . (which has the free energy cost s > drF=sA,
A being the area of a flat interface). It also assumes that there are
no overhangs of the interface, so l(rF ) is a single-valued function, and
that the interface is almost flat, i.e., (Nl)2 is very small everywhere
(> drF[1+(Nl)2/2] simply represents the actual area of the distorted
interface in Fig. 15).

The term Veff(l) describes the interaction of the interface in Fig. 15
with the substrate surface. Assuming short range forces between the sub-
strate atoms and the atoms of the fluid that forms the liquid film on the
substrate, one writes (59)

Veff(l)=−dea0e−ol+be−2ol − hl, de=(Tw − T)/Tw (50)

for the case of the system that undergoes a second-order wetting transition
at de=0 in Eq. (50). According to the mean field theory of the previous
subsection, the decay length o−1 of the effective interface potential should
simply be the correlation length. h is a (rescaled) bulk field which in the
present subsection we normalize as h — 2mbH, while a0, b are phenome-
nological positive constants. In fact, the form of this potential (cf. Eq. (50))
can be justified from the more detailed mean field theory of the previous
section (63, 64) and we can relate the constants a0, b as well as the location of
the wetting transition temperature Tw to the parameters in the Hamiltonian
(H1, Js, J, cf. Eq. (2)). Qualitatively, the shape of Veff(l) has already been
sketched in the upper part of Fig. 5.
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If we disregard the fluctuations of the local interface position at this
point of the treatment, we can find the equilibrium position of the interface
by minimizing Veff(l) with respect to l,

dVeff(l)
dl

=0 S h=2ob exp(−2ol) − de oa0 exp(−ol) (51)

For h=0 and de > 0, i.e., T < Tw, on the non-wet side of the transition, we
again find the well-known logarithmic divergence of the thickness of the
wetting layer,

l=−
1
o

ln(a0 de/2b) (52)

consistent with our previous calculation (cf. Eq. (25)). For de < 0 and h=0
the minimum occurs for l Q ., i.e., an unbound interface. However, it then
is of interest to consider the question how l diverges when h Q 0 (‘‘complete
wetting’’). (4–6) Again one finds a logarithmic divergence,

l % −
1
o

ln(h/[ − de oa0]). (53)

Of course, in this framework it is also easy to describe a first-order
wetting transition rather than critical wetting. This occurs when the con-
stant b in Eq. (50) is negative rather than positive, and then one needs a
higher order term (c exp(−3ol) with c > 0) to obtain a finite solution for l
in the non-wet case. Indeed, the effective interface potential (with positive
constants a0, b, c)

Veff(l)=−dea0e−ol − be−2ol+ce−3ol − hl (54)

for h=0 displays indeed the behavior sketched qualitatively in the lower
part of Fig. 5. The temperature corresponding to de=0 now is not the
wetting transition temperature, however, but rather the ‘‘spinodal’’ of the
wet phase, since one finds that the first-order wetting transition occurs for

detr=−
b2

4ca0
, (55)

and a metastable non-wet phase exists up to the ‘‘spinodal temperature’’

desp=−
b2

3ca0
, (56)
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Such ‘‘surface spinodals’’ have also been obtained from the Ginzburg–
Landau treatment of first-order wetting transitions, of course (cf. Fig. 13).
Thus, de in Eq. (54) needs to be reinterpreted as (Tw

sp − T)/Tw in the present
case. The interface position at the first-order wetting transition is straight-
forwardly found as

ltr=−
1
o

ln(2c/b) . (57)

One can also locate the prewetting transition lines to find that they termi-
nate at the prewetting critical point located at

depre
c =16 detr/9, lpre

c =−
1
o

ln(9c/2b). (58)

For completeness, we mention the case of the tricritical wetting transi-
tion, which in this framework is simply described by the special case when
b vanishes, and hence

l=−
1

2o
ln(3c/a0 de), for h=0, de=(Tw − T)/Tw > 0. (59)

This treatment now is easily generalized to the case of interface
localization-delocalization in thin films. (15, 16, 59, 65) We now have to super-
impose the potentials from the two competing walls. It is convenient to
normalize the resulting potential as follows (65)

V(l)=Veff(l)+Veff(D − l) − 2Veff(D/2), (60)

which yields (for the case h=0, using the abbreviation a — − a0 de),

V(l)=2a exp(−oD/2){cosh[o(l − D/2)] − 1}

− 2b exp(−oD){cosh[2o(l − D/2)] − 1}

+2c exp(−3oD/2){cosh[3o(l − D/2)] − 1} (61)

In general, the phase boundaries depend on the variables a/c, b/c and oD.
It is convenient to analyze the situation using the auxiliary variable m̃,
which is defined by (65)

m̃2=2 exp(−oD/2){cosh[o(l − D/2)] − 1}

% [exp(−oD/4) o(l − D/2)]2+higher orders of (l − D/2) (62)
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Thus, to leading order m̃ simply is proportional to the order parameter of
the interface localization-delocalization phase transition, since m̃ — 0 if the
interface is located at l=D/2, i.e., in the center of the film (Fig. 6). With
some algebra, the reduced interface potential V(l) then can be written in
the form (65)

V(l)=c[m̃2(m̃2 − r)2+tm̃2] (63)

where the following abbreviations have been introduced

r=
b
2c

− 3 exp(−oD/2) (64)

and (atr — detr a0)

t=
a − atr − b exp(−oD/2)

c
. (65)

Negative values of r correspond to second-order localization-delocalization
transitions, r=0 corresponds to a tricritical transition, (60) and positive
values of r give rise to a first-order transition. The quantity t has the
meaning of reduced temperature distance from the tricritical transition
temperature (for r [ 0), and t=0 denotes the triple temperature in the case
of a first-order interface localization-delocalization transition (see below).
For r [ 0 the phase boundaries depend only on the two parameter combi-
nations r and t. In these variables the limit oD Q . is particularly trans-
parent: cr Q b/2, ct Q a − atr, and m̃ Q exp(−ol). We now discuss the
behavior for finite oD in more detail.

A second-order interface localization-delocalization transition (i.e.,
r < 0) will occur either if the wetting transition is second-order (i.e., b < 0
in Eq. (64)), or if the wetting transition is first-order but the film thickness
D is small enough to comply with 0 < b < 6c exp(−oD/2). From the
treatment (65) reviewed here it becomes particularly transparent that by
reducing the thickness D of the film the order of the transition may change
from first-order to second-order at a tricritical thickness (66) Dt, which in the
present mean field theory becomes Dt=−2

o ln(b/6c).
Since the coexisting phases are symmetric with respect to exchanging l

and D − l, phase coexistence occurs at h=0, or “V/“l=(“V/m̃)(“m̃/“l)=0.
From this condition one obtains for the binodals (65)

m̃2=
2 |r|

3
{ `1+3Dt/(4r2) − 1), Dt=tc − t, tc=−r2 (66)
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where Dt denotes the distance from the critical temperature at fixed r. One
recognizes two different types of critical behavior, namely (two-dimen-
sional) mean field critical behavior (2dMF) of a system with a single scalar
order parameter m=(l/D − 1/2), or (two-dimensional) tricritical mean
field behavior (2dTMF);

m̃2
0

˛Dt/4 |r| for Dt ° r2 (2dMF)

`Dt/3 for Dt ± r2 (2dTMF)
(67)

Of course, the two-dimensional character of these phase transitions
shows up in the critical exponents only if one goes beyond mean field,
while on the mean field level the exponents have their standard values,
which we can read off from Eq. (67), namely defining m 3 (Dt)b

b2dMF=1/2, b2dTMF=1/4. (68)

The crossover between mean field critical and tricritical behavior occurs
around |Dtcross | % r2. As r Q 0, the tricritical point is approached and the
regime where mean field critical behavior is observable shrinks. At the
tricritical point only the tricritical regime (2dTMF) exists, i.e., Dtcross=0,
and the binodal takes the particularly simple form, m̃= ± (Dt/3)1/4. These
considerations are exemplified in Fig. 16. The crossover in the binodal is
illustrated in the inset of Fig. 16(a) for the special case r=−0.4.

Of course, the above considerations neglect fluctuations and the
behavior close to the transition is governed by two-dimensional Ising criti-
cal and tricritical exponents, respectively. The resulting additional cross-
over between the above mean field behavior and this non-mean field
behavior will be discussed below.

If we wish to deal with fluctuations, we have to return to the Hamil-
tonian Heff(l) in Eq. (49) and include now the term s(Nl)2/2. A full treat-
ment of this problem requires a complicated renormalization group
approach (67–76) and is beyond the scope of the present article, however.
Thus we shall restrict the present consideration to Gaussian fluctuations
around the mean field results. Thus we write (dl — l(rF ) − leq)

Veff{l(rF )}=Veff(leq)+
1
2
1“

2Veff

“l2
2

leq

(dl)2, (69)

where now the solution for l found from the minimization of Veff(l),
cf. Eqs. (51)–(53), for instance, is denoted as leq. Introducing Fourier
transforms lqF of dl(rF ), where qF is a two-dimensional wave vector oriented
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Fig. 16. (a) Illustration of the different regimes for a second-order and tricritical interface
localization-delocalization phase transition; 2dTMF-mean field tricritical behavior; 2dMF-
mean field critical behavior; 2dI-two-dimensional Ising critical behavior; 2dT—two-dimen-
sional tricritical behavior. The inset shows the temperature dependence of the order parameter
m̃ for r=−0.4 as calculated within mean field theory (using Eq. (66)). (b) Dependence of the
critical temperature tc on the distance r from the tricritical point. The curves correspond to
different values of oD, as indicated in the key. Thick lines, which bracket the behavior, corre-
spond to tc=7r2/5 (valid for small oD) and tc=7r2/9 (valid in the limit oD Q .). The inset
shows binodals of fixed value b/c=4.44 and several choices of oD as indicated in the key
(remember that b/c controls the strength of the first-order wetting transition of a semi-infinite
system, cf. Eq. (57). For b/c=4.44 > 3 exp(−oD/2), and hence r > 0, there are two critical
points (highlighted by dots) for all values of film thicknesses. From Müller and Binder. (65)
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parallel to the interface, we can rewrite the effective interface Hamiltonian,
Eq. (49), as

Heff({l})=AVeff(leq)+
1

2(2p)2 F dqF 5sq2+1“
2Veff

“l2
2

leq

6 |lqF |2 (70)

From Eq. (70) we can immediately read off that the correlation length t|| of
local fluctuations of the interface position dl is

t||=`s/(“
2Veff/“l2)|leq

. (71)

Noting that the effective Hamiltonian, Eq. (70), is harmonic in the lqF , we
can immediately invoke the equipartition theorem to conclude that

s

2
(q2+t−2

|| )O|lqF |P2=
1
2

kBT, (72)

and hence the mean square displacement of the interface position is

O(dl)2P=
1

(2p)2 F dqF O|lqF |P2=
kBT

(2p)2s
F dqF

1
q2+t−2

||

. (73)

Here it is understood that the integration is only extended to some upper
cutoff, which we call qmax here, and which is assumed to be of the same
order as the inverse of the correlation length tb in the bulk (or the
‘‘intrinsic’’ interfacial width w0, respectively). Thus,

O(dl)2P=
kBT
2ps

F
qmax

0

q dq
q2+t−2

||

%
kBT
2ps

ln(t||qmax) (74)

for t||qmax ± 1. From Eqs. (73) and (74) it is obvious that the mean square
width of the interface diverges for a free interface, which is unbound from
the wall(s), for which Veff(l)=0 and hence t−1

|| =0. Then the lateral size L
of the system acts as a lower cutoff, qmin=2p/L, for the q-integrations
in Eqs. (73) and (74), and one hence finds the well-known logarithmic size
dependence (52–56)

O(dl)2P %
kBT
2ps

ln(Lqmax)+const. (75)

However, a more precise description of the spectrum of the capillary waves
near q=qmax is still a topic of active research. (30, 77–82)
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Using now Eqs. (50), (52), and (71), we can calculate the critical
behavior of t|| as the second-order wetting transition is approached,

t||=o−1
`2bs (a0de)−1

S t|| 3 (Tw − T)−n||, n||=1. (76)

This treatment can be generalized easily to the interface localization-
delocalization problem, using now (in the second-order case) Eq. (61) with
b < 0 (and setting c — 0). For T > Tc(D) where leq=D/2, this yields

“
2V

“l2
:
l=D/2

=2 exp(−oD/2) o2[ − a0 de+4b exp(−oD/2)] (77)

and noting that the response function q̄ can be written as (15)

q̄ —
“leq

“h
:
T, D

=[(“
2V/“l)2

l=D/2
]−1, (78)

we find, using t — [Tc(D) − T]/Tw,

q̄=(2o2a0)−1 exp(oD/2)(−t)−1, (79)

with

t=de −
4b
a0

exp(−oD/2). (80)

Equation (80) shows that Tc(D) differs from Tw only by terms that are
exponentially small in oD/2, and for the case where b < 0 in Eq. (61) we
always have Tc(D) < Tw. Since the susceptibility q=“m/“H then becomes

q=4m2
bq̄/D=Ĉ+

MF
(−t)−c

MF, cMF=1, (81)

we conclude from Eqs. (79) and (81) that the critical amplitude in this
mean field (MF) theory is (15)

Ĉ+
MF

=(2m2
b/o2a0) exp(oD/2)/D. (82)

For the correlation length t|| we find from Eqs. (71), (77), and (80) a criti-
cal exponent that differs from the wetting case (cf. Eq. (76)), namely

t||=t̂+
MF(−t)−nMF, n

MF
=1

2 , (83)

and the critical amplitude again has an (unusual!) exponential dependence
on the thickness D of the thin film,

t̂+
MF=o−1

`s/2a0 exp(oD/4) (84)
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Expanding the potential V(l) around leq=D/2 up to fourth order, we find
that (15)

leq − D/2= ± o−1
`a0/2b exp(oD/4) t1/2, (85)

and hence the order parameter in this mean field theory again yields the
exponent bMF=1/2 and the critical amplitude becomes (mMF=
mb(2leq − D)=B̂MF tbMF)

B̂MF=`2a0/b mb exp(oD/4)/(oD). (86)

This exponential dependence on D exhibited by the critical amplitudes in
this phase transition has important consequences when one considers the
question over which range of temperature distances t from Tc(D) this mean
field theory is valid, and where it breaks down due to the effects of thermal
fluctuations. As is well known, (83–85) mean field theory is self-consistent,
if the order parameter fluctuations in a correlation volume are small in
comparison to the square of the mean order parameter. For the present
geometry, one obtains (rF — (rF, z))

F
D

0
dz F

r < t||

drF [Om(rFŒ) m(rFŒ+rF)P− m2
MF] ° Dt2

||m
2
MF (87)

Near Tc(D), t|| is very much larger than D, and the inhomogeneity of m(rF)
in the pure phases (for z < l(rF ) or z > l(rF ), respectively) can be ignored—
it contributes only a prefactor of order unity. Thus one concludes (15) that
Eq. (87) is essentially equivalent to the standard form of the Ginzburg cri-
terion, expressed by the condition that the Ginzburg number Gi is small in
comparison to the temperature distance t from Tc(D)

Gi ° |t|, Gi=Ĉ+
MFB̂−2

MFkBT/[(t̂MF
+ )2 D]

=exp(−oD/2)[2bkBTo2/(a0s)] (88)

From Eq. (88) one sees that the Ginzburg number decreases exponentially
fast with thickness, and hence the mean field theory of interface localiza-
tion-delocalization (16, 59) for large D should be very accurate. The same
statement applies (65) to the tricritical transition, where Gi 3 exp(−oD).

At this point, we caution that despite its plausibility and elegance the
above description (cf. Eqs. (49)–(88)) in terms of the interface Hamiltonian
may suffer from fundamental defects: it is not obvious that the problem
really can be fully reduced to the statistical mechanics of only a single col-
lective coordinate l(rF ). Such a point of view has been emphasized by Parry
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and Boulter, (86–91) who showed by several rather compelling arguments that
Eq. (49) actually loses important physics (particular with respect to the
description of complete wetting) that is still contained in the more micro-
scopic mean field theory (based on Eq. (16), for instance). They pointed
out that one can remedy these defects by generalizing Eq. (49) to an effec-
tive Hamiltonian with two coupled collective coordinates (l1(rF ), l2(rF ))
instead of a single one:

Heff({l1, l2})=F drF{1
2 smnNlm · Nln+V(1)

eff (l1)+V(2)
eff (l2 − l1)}, (89)

where smn(m, n=1, 2) are elements of a symmetric ‘‘stiffness matrix.’’ l1(rF )
models order parameter fluctuations near the wall which are neglected in
the traditional capillary wave theory, and l2(rF ) represents the position of
the unbinding interface (i.e., the variable analogous to l(rF ) before). In the
simplest case, one can assume that smn is diagonal, V (1)

eff (l1)=1
2 (s11/t2

+ ) l2
1,

t+ being the transverse correlation length at the wall, and V (2)
eff can be taken

to have the same form as Veff(l) before (cf. Eq. (50)). Then one finds that
the length o−1 (which according to the standard mean field theory is just
the correlation length tb) (59) is renormalized when one considers complete
wetting near a critical wetting transition (h1 near h1c). Instead of Eq. (53),
namely leq % − o−1 ln h+const, one finds to leading order, (86–91)

OlP=−
(1+w/2)

o
ln h+const, h Q 0 (90)

where w is the capillary parameter that enters also the theory of critical
wetting,

w=
kBT

4pt2
bs

. (91)

Here we are not giving a full account of these recent developments but
rather refer to recent reviews. (91, 92)

2.3. Scaling and Renormalization Group Predictions

As a first step, we consider the consequences of scaling behavior near
the bulk critical point in this section, following the pioneering papers of
Fisher and Nakanishi. (13, 24, 25)

1448 Binder et al.



We consider hence the singular part fsing of the free energy density of a
thin film Ffilm(T, H, H1, D)/(AD), cf. Eq. (28), and make the standard
scaling assumption. (7, 8, 24) Defining t=(T − Tcb)/Tcb, we write:

fsing(T, H, H1, D)=|t|2 − a f̃± (D |t|n, H |t|−D, H1 |t|−D1), (92)

where we have again assumed that the same field H1 acts on both surfaces
of the thin film, and a is the critical exponent of the specific heat of the
three-dimensional Ising model, and f̃± is a scaling function which has two
different branches, according to the sign of t. The critical behavior of the
bulk correlation length tb is (58, 93, 94)

tb=t̂± |t|−n, n % 0.63, (93)

and Eq. (92) thus expresses the principle of finite size scaling that ‘‘the film
thickness D scales with the correlation length tb.’’ (95–99) While the gap
exponent D that enters in the scaling power of the bulk magnetic field is
known very precisely, (58, 93, 94)

D=c+b % 1.56, (94)

the surface counterpart D1 is known with somewhat less precision (8, 100–104)

D1 % 0.47 ± 0.01. (95)

In order to consider singularities that occur in Eq. (92) when one
keeps D finite and fixed, such as for a consideration of capillary condensa-
tion, it is convenient to introduce the scaling variables

x — D |t|n, w — H1DD1/n. (96)

Then Eq. (92) can also be written differently, eliminating |t| from the
arguments of f̃± ,

fsing(T, H, H1, D)=|t|2 − a f̃± (x, HDD/n/xD/n, w/xD1/n) (97)

We now investigate the possibility of critical behavior in the thin film.
Since the associated critical point is shifted relative to the bulk critical
point (Tcb, H=0), it must correspond to a singular behavior of the scaling
function f̃± . At fixed H1 and fixed D this means that the scaling function
f̃± (x, y, y1) (where y1=w/xD1/n) has a singularity at a point xc(w), yc(w).
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Therefore, one obtains for the shifts DTc(D) and DHc(D) of the capillary
condensation critical point (cf. Fig. 10) (24, 25)

DTc=Tc(D, H1) − Tcb=−BTD−1/nXc(CH1DD1/n), (98)

DHc — Hc(D, H1)=−BHD−D/nYc(CH1DD1/n). (99)

Here BT, BH and C are non-universal amplitudes, the scaling functions Xc

and Yc are universal and normalized such that they have the following
expansions for small arguments,

Xc(Cw)=1+(Cw)2+ · · · , Yc(Cw)=Cw+O((Cw)3). (100)

Note that Xc(Cw) and Yc(Cw) are analytic for w Q 0, and we have made
use of the fact that the symmetries of the Ising model (cf. Eq. (3)) require
that Xc is an even function of H1 and hence, w, while Yc is an odd function
of H1. From these considerations, we straightforwardly obtain for small H
that

DTc=−BTD−1/n, DHc=−BHCH1D−(D − D1)/n. (101)

An interesting aspect of this result is the question how this result fits
together with the Kelvin (23) equation (DHc 3 − H1/D, cf. Fig. 10) which we
expect to hold if we consider temperatures below the capillary condensa-
tion critical point for large enough D. This question can be answered by
the following argument: If H1=H=0, we would have two coexisting
phases with magnetization profiles m+(z) > 0 and m−(z)=−m+(z) across
the film, and both states would have the same free energy F+(0, 0)=
F−(0, 0). These free energies F ±(H, H1) are smooth functions of H and H1

(for the considered temperature T < Tc(D)). Hence one can expand them
around F+(0, 0) and F−(0, 0) as follows

F+(H, H1)=F+(0, 0) − m+HDL2 − 2m+
1 H1L2, (102)

F− (H, H1)=F− (0, 0) − m−HDL2 − 2m−
1 H1L2 (103)

where m+ and m− refer to the average over the magnetization profiles
m+(z) and m−(z) in the coexisting states with zero bulk and surface fields,
and m+

1 , m−
1 are the respective surface magnetizations. Using the obvious

symmetries m−=−m+, m−
1 =−m+

1 , the condition for phase coexistence
F+(H, H1)=F− (H, H1) then yields

Hcoex(D, T, H1)=−
2H1

D
m+

1 (D, T)

m+(D, T)
. (104)
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If D ± tb the profile m+(z) must approach the spontaneous magneti-
zation in the bulk (mb=B̂(−t)b) almost everywhere, and hence m+(D, T)
differs from mb only by a 1/D correction (7, 8) which can be neglected in the
order considered. Similarly, m+

1 (D, T) approaches the surface layer mag-
netization of a semi-infinite system, (7, 8) m1=B̂1(−t)b1, where b1 is the cri-
tical exponent of the surface layer magnetization at the ‘‘ordinary transi-
tion’’ (7, 8, 57, 105) of an associated semi-infinite system, and B̂1 is critical
amplitude analogous to the critical amplitude B̂ of the bulk magnetization.
Equation (104) then yields

Hcoex(D, T, H1) % −
2H1

D
B̂1

B̂
(−t)b1 − b, x=D |t|n

Q . (105)

For D large but finite, crossover occurs from the behavior described
by Eq. (105) at t % tcross to the behavior of Eq. (101), tcross being of the same
order as the shift of Tc, tshift=DTc/Tcb 3 − D−1/n. Thus, Hcoex(D, Tc(D), H1)
indeed follows from Eq. (105) in full agreement with Eq. (101). Note
the scaling relation 1+(b1 − b)/n=(D − D1)/n which follows from (7, 8)

b=2 − a − D and b1=2 − a − n − D1. There is also an interesting scaling
relation for the slope of the coexistence curve Hcoex(D, T, H1) as T Q Tc(D),
namely

tan(G) — (“Hcoex/“T)H1
=

2H1

D
B̂1

B̂
b1 − b

Tcb
(−t)b1 − b − 1 3 H1D−

(b1 − b − 1)

n
− 1

=H1D−(D − D1 − 1)/n. (106)

While in Landau theory (7, 8) D=3/2, D1=1/2 so the power of D vanishes,
i.e., the slope remains finite and non-zero at Tc(D) in the limit D Q .,
for the three-dimensional Ising model this slope actually vanishes
((D1 − D − 1)/n % 0.14 ± 0.2 (100–105)), and G Q 0 as D Q .. This result also
implies that for capillary condensation field mixing effects (106) can be
neglected for D Q ..

We are now interested in the critical behavior near the critical point of
the thin film and hence consider the case y=yc(w) in Eq. (97), keeping x
near xc(w). For fixed w, the dependence on both w and yc(w) does not
need to be considered explicitly and we can write the singular part of the
free energy, the magnetization and the susceptibility of the film as

fsing(T, D)=D−3 f̃̃(xŒ), xŒ — tD1/n (107)

m=D−b/n m̃(xŒ), q=Dc/n q̃(xŒ), (108)
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with b, c, n the exponents of the three-dimensional Ising model. f̃̃(xŒ),
m̃(xŒ), and q̃(xŒ) suitable scaling functions that can be derived from f̃± , if
the latter function is known explicitly. The singularity at x=xc(w) trans-
lates into a singularity of xŒ at x −

0(wŒ), of course. Following standard
assumptions on crossover scaling in systems with a linear dimension being
finite, (24, 25, 95–99, 107–111) the specific heat CV, order parameter m, and suscep-
tibility q of the thin film result from a corresponding singularity of the
respective scaling functions, i.e.

CV 3 D2/n − 3 |xŒ − x −

c |
−a2, m 3 D−b/n(x −

c − xŒ)b2,

q 3 Dc/n |xŒ − x −

c |
−c2,

(109)

where a2, b2, c2 are the corresponding exponents of the specific heat, order
parameter and susceptibility of a corresponding bulk two-dimensional
system. (In the Ising model, the logarithmic singularity [a2=0] means
the term |xŒ − x −

c |
−a2 needs to be re-interpreted as ln |xŒ − x −

c |, of course).
As a consequence, in terms of the reduced temperature distance tŒ=
(T − Tc(D))/Tcb=(xŒ − x −

c) D−1/n we obtain

CV 3 D2/n − 3 ln |tŒ|, m 3 D (b2 − b)/n(−tŒ)b2,

q 3 D (c − c2)/n |tŒ|−c2, tŒ Q 0.
(110)

The crossover from three-dimensional to two-dimensional critical
behavior in thin films shows up in a singular variation of the critical
amplitudes with film thickness D. Of course, the larger D is the narrower
the critical region becomes: only if the variable |xŒ − x −

c | ° 1 can we expect
to see the two-dimensional critical behavior, which requires |tŒ| ° D−1/n.

This general line of reasoning can be extended to discuss wetting tran-
sitions near the bulk critical points, and thus derive the phase diagrams
already shown in Fig. 4. (13) We simply have to consider the limit of very
thick films, D Q . which are equivalent to the semi-infinite case in the
sense that the free energy of the film can be split into a bulk term and a
contribution from the two (equivalent) surfaces, cf. Eq. (28). Consequently,
Eq. (92) yields the singular part of the free energy of the system, for
D Q .,

fsing(T, H, H1, D)=|t|2 − a f̃ (bulk)
± (H |t|−D)

+
2
D

|t|2 − a − n f̃ (surface)
± (H |t|−D, H1 |t|−D1), (111)

where we have anticipated that the bulk part of the free energy must, of
course, be independent of H1. Equation (111) is only sufficient if (in the limit
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H1 Q 0) the surface undergoes the ‘‘ordinary transition’’ (cf. Fig. 3), (8, 57)

which happens for the case where there is no (or only a subcritical) enhan-
cement of the exchange interactions at the surface of the Ising model. Par-
ticularly interesting, however, is the case where one has an enhancement of
the exchange interactions such that one stays at or close to the surface-bulk
multicritical point (8, 57) (cf. Fig. 3). Denoting the distance from the surface-
bulk multicritical point as g — (Js − Jsc)/J, we need to include g as an
additional scaled variable in the singular part of the surface free energy.
This leads to (8, 13)

f (surface)
sing (T, H, H1, g)=|t|2 − a − n f̃SB

± (H |t|−D, H1 |t|−D
SB
1 , g |t|−f), (112)

where f̃SB
± is now the scaling function of the surface free energy at the

surface-bulk multicritical point, DSB
1 is the analog of the exponent D1 but

for the multicritical point, and f is the ‘‘crossover exponent’’ describing the
merging of the surface transition line at this multicritical point with bulk
transition at temperature Tcb, i.e.

Tcs − Tcb 3 g1/f
± . (113)

Of course, Eq. (113) simply results from the reasoning that the surface
transition line Tcs=Tcs(g) is found at the appropriate singularity of the
scaling function f̃SB

± (0, 0, z), occurring at some value z=zc. Note that
f=1/2 in mean field theory; (7, 8, 57) the value of f for the 3d Ising model
is not yet known very precisely, but it is believed to be rather close to the
mean field result. (100–103) For g < 0 the only singularities (in the limit
H1 Q 0) occur for t Q 0, and in this limit f̃SB

± in Eq. (112) reduces to
f̃ (surface)

± of Eq. (111) again.
We now discuss wetting transitions for this case of subcritical or criti-

cal surface exchange enhancement, i.e., for g [ 0. From Eq. (111) we
conclude, noting that the wetting transition is a singularity of f̃ (surface)

± (0, X)
for X — H1(−t)−D1 reaching some critical value Xc. Consequently, the
surface field H1 at the wetting transition vanishes according to the follow-
ing power laws as t Q 0,

H1c 3 (−t)D1, g < 0; H1c 3 (−t)D
SB
1 , g=0. (114)

Again the existing estimates for DSB
1 , e.g., ref. 101, DSB

1 % 1.04 differ only
slightly from the mean field result, (7, 8) DSB

1 =1.
A discussion of prewetting criticality is particularly interesting: this

prewetting critical point must show up as a critical singularity of f̃ (surface)
± ,

but in general it is a line in the space of variables (H, H1, t, g) where both
H and H1 are non-zero. Only when one approaches tricritical wetting, do
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the wetting transition and the prewetting critical point coincide at H=0.
Nakanishi and Fisher (13) now recognized that in the case g > 0 the surface
transition simply is a point of particular symmetry (where H=H1=0) on
the line of critical prewetting transitions (see Fig. 3). Since these prewetting
transitions belong to the universality class of the two-dimensional Ising
model as well, this point is not a singular point on this line.

The limiting case when the surface transition merges with the bulk cri-
tical temperature Tcb is of special interest. The prewetting critical lines also
must end there, and since end points of prewetting critical lines at the
coexistence curve (T [ Tcb, H=0) have the character of tricritical wetting
transitions, the surface-bulk multicritical point also is the endpoint of a line
of tricritical wetting transitions.

From these considerations and the scaling forms of the surface free
energy (cf. Eqs. (111) or (112), respectively) one can work out the asymp-
totic power laws of the curves in Fig. 3 as t Q 0. E.g., tricritical wetting
is a singularity of Eq. (112) for H=0 , XŒ — H1(−t)−D

SB
1 =X −

t and Y —

g(−t)−f=Yt. As a consequence, the line of tricritical wetting transitions
merges at the surface-bulk multicritical point as

(Jsc − Jst)/J 3 (1 − Tt/Tcb)f, (115)

where Tt is the tricritical wetting temperature and Jst the corresponding
surface coupling.

Next we discuss the scaling behavior of the critical and tricritical
wetting transitions themselves. Of course, the nature of these singularities
cannot be concluded from the scaling structure of Eqs. (111) and (112).
Similarly, for the case of capillary condensation we also could not use
Eq. (92) to show that the transition of the thin film belongs to the univer-
sality class of the two-dimensional Ising model; instead we introduced this
in Eq. (109) as a hypothesis. For wetting transitions, however, the critical
behavior is completely non-trivial, and to analyze it renormalization group
treatments of Eqs. (49) and (89) have been proposed. (67–76, 112) Here we shall
not describe these theories in detail but summarize only these results which are
most pertinent for the analysis of the simulation data shown in Section 3.3.

Assuming that a critical wetting transition occurs at H1=H1c(T) and
denoting the reduced distance from this wetting transition as t̃=
(H1c − H1)/J, we find a scaling description of the surface free energy per
spin fs(T, H, H1) (112)

f sing
s (T, H, H1)=t̃ 2n||W1(Ht̃ −2n||)+cH ln[HW2(Ht̃ −2n||)], (116)

where n|| is the critical exponent of the correlation length t|| 3 t̃ −n|| of inter-
face fluctuations, W1 and W2 are scaling functions, and c is a constant. Note
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that there is a single exponent n|| describing the singularities at critical
wetting. The power of t̃ in front of W1 is a simple consequence of a hyper-
scaling-type relation for surface critical phenomena: (d − 1) n||=2 − as, for
d=3, as being the critical exponent of the surface excess specific heat.
While in mean field theory n||=1 (cf. Eq. (76)), renormalization group
theory predicts that n|| is non-universal and depends on the capillarity
parameter w (cf. Eq. (91)), (67–76, 112)

n||=˛ (1 − w)−1 if 0 [ w [ 1/2,

(`2 − `w)−2 if 1/2 [ w [ 2,
. if w \ 2 .

(117)

Near Tcb Fisher and Wen (113) have shown that w 4 0.86, and at all
temperatures between the roughening temperature TR and Tcb for the simple
cubic nearest-neighbor Ising model w seems, in fact, to have only a rather
weak temperature dependence, (113) implying that for the temperatures of
interest n|| is close to n|| % 4. Therefore, a very dramatic deviation from the
mean field description is predicted.

From Eq. (116) one then can show that, to leading order for H Q 0
and f̃ Q 0,

ms=−(“fs/“H)t̃, H1
% − c ln[HW2(Ht̃ −2n||)], (118)

q1=−(“
2fs/“H “H1)t̃ % t̃ −1 q̃1(Ht̃ −2n||) (119)

and

q11=−(“
2fs/“H2

1)
t̃, H

% t̃ 2n|| − 2 q̃11(Ht̃ −2n||) (120)

where q̃1 and q̃11 are suitable scaling functions deriving from W1 and W2.
Equation (118) implies for t̃=0 that ms % − c ln H and for H Q 0 (since
W2(z Q 0) 3 z−1 to ensure a sensible limit) ms % − c ln t̃, i.e., results identi-
cal to mean field theory (cf. Eq. (37)). On the other hand, we conclude that

q1(H=0) 3 t̃ −1, q1(t̃=0) 3 H−1/2n|| (121)

where the second of these relations resulting from the fact that in Eq. (119)
the powers of t̃ must cancel for t̃ Q 0 at fixed small H. At this point, we
also note that Eqs. (119)–(121) should only hold in a strict sense for 0 <
w < 1/2, while for w > 1/2 further logarithmic corrections are predicted (73)

which we disregard here for simplicity.
This description can be extended to tricritical wetting, but now the

general scaling structure of Eq. (116) needs to be generalized to include
another scaling variable v, which at the tricritical point is tangential to the
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line H1c(Js/J) of critical wetting transitions in the space of variables
(H1, Js/J). Denoting W (t)

1 , W (t)
2 as scaling functions we write,

f sing
s (T, H, H1, Js/J)=t̃ 2n

t
||W (t)

1 (Ht̃ −2n
t
||, t̃v−1/f)

+c (t)H ln[HW (t)
2 (Ht̃−2n

t
||, t̃v−1/f)]. (122)

n t
|| is the tricritical value of the exponent n|| (n t

||=3/4 in mean field theory),
and f is the crossover exponent describing the crossover from tricritical to
critical wetting (f=1/2 in mean field theory). The line of critical wetting
transitions is given by a critical value of the scaling variable z=t̃v−1/f,

t̃cv−1/f=zc (critical wetting) (123)

Note that t̃ — (H1t − H1)/J describes the distance from the tricritical
wetting transition. In this case renormalization group theory (70, 72, 114) pre-
dicts a non-universal behavior of n t

||, depending again on the parameter w,
Eq. (91),

n t
||=˛3/(4 − 6w) if 0 [ w < 2/9,

(`2 − `w)−2 if 2/9 [ w [ 2,
. if w \ 2.

(124)

To complete this section, we discuss the critical behavior of the inter-
face localization-delocalization phase transition, using our discussion of the
Ginzburg criterion (cf. Eq. (87)) to conclude that an appropriate crossover
scaling variable is (15)

z=t exp(oD/2), (125)

where now t=[Tc(D) − T]/Tw as in Eqs. (79)–(86). We hence make the
phenomenological assumption that the magnetization of the thin film of
thickness D can be written as (cf. Eq. (86)).

m=D−1 exp(oD/4) t1/2m̃(z) (126)

where for large z the crossover scaling function m̃(z) tends to a constant
(cf. Eq. (86)). Now we postulate that for small z one must have criticality
according to the two-dimensional Ising model, and hence

m̃(z ° 1) 3 zb2 − 1/2, b2=1/8. (127)
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From Eqs. (125)–(127) we find (15)

m(t Q 0)=B̂(D) tb2, b2=1/8

B̂(D) 3 D−1 exp(oDb2/2)=D−1 exp(oD/16).
(128)

Next we consider the susceptibility for T > Tc(D) (cf. Eq. (82))

q=D−1 exp(oD/2)(−t)−1 q̃(z), (129)

where again we conclude that q̃(z Q − .) tends to a constant, and
Eq. (129) becomes equivalent to Eq. (82), while for − z ° 1

q̃(−z ° 1) 3 (−z)−(c2 − 1), c2=7/4 (130)

This yields the critical behavior of the susceptibility in the Ising regime as
follows,

q=q̂+(−t)−c2, q̂+ 3 D−1 exp[oD(2 − c)/2]=D−1 exp(oD/8). (131)

Finally we consider the correlation length t||, Eq. (84),

t||=exp(oD/4)(−t)−1/2 t̂(z) (132)

where Eq. (84) is reproduced if t̂(z Q − .) tends to a constant, while for
small (−z) one has

t̃(−z ° 1) 3 (−z) (1/2) − n2 with n2=1. (133)

The asymptotic critical behavior of the correlation length is

t||=t̂+
|| (−t)−n2, t̂+ 3 exp[oD(1 − n2)/2]=1, (134)

hence there is no anomalous film thickness dependence in the critical
amplitude of the correlation length.

Lastly, we examine the combination Dt2
||m

2q−1 that appears in the
Ginzburg criterion (cf. Eq. (88)) again, but now in the Ising critical region
rather than in the mean field critical region. Now this combination
becomes independent of both t and D, as it should be: in the Ising critical
region, this combination reduces to the universal critical amplitude combi-
nation (t̂+)2 B̂2(q̂+)−1 D, which indeed is independent of D, if Eqs. (128),
(131), and (134) are inserted.

Of course, the treatment presented in Eqs. (125)–(134) is highly phe-
nomenological (115) and tells nothing about the explicit form of the scaling
functions m̃, q̃, and t̃. To calculate the latter, renormalization group
methods will be necessary.

Monte Carlo Studies 1457



3. MONTE CARLO SIMULATIONS

3.1. Comments About the Simulation Technique of

Lattice Models

Simulations of Ising models addressing their bulk critical behavior are
abundant, and an impressive level of accuracy has been reached. (94, 116, 117)

Most of this work uses Swendsen–Wang–Wolff cluster algorithms (117–120)

and has thus been restricted to zero field; however, the present problem
demands the inclusion of magnetic fields. In order to use such methods
here, an extension of the cluster algorithm that allows for the inclusion of
magnetic fields (121–124) must be applied. So far, for the current problem
(where in the general case both surface magnetic fields H1 and a bulk field
H are present) only the simplest variant of these extensions was used, (125)

namely the ‘‘ghost spin algorithm.’’ (121) The coupling of spins to a magnetic
field is thereby treated as if it were an additional infinite-range exchange
coupling to an extra spin SG= ± 1. This coupling has the strength h=|H|
for spins in the interior of the system and h=|H1+H| for spins in the
surface layers. In addition to putting bonds in clusters of spins (inside a
cluster all spins are connected by exchange interactions and have the same
sign) with probability (117–120) pB=1 − exp(−2J/kBT) one also puts bonds
between the spins in clusters and the ghost spin with probability (121)

pG=1 − exp(−2h/kBT), if the orientation of the spin in the cluster is the
same as that of the ghost spin [which is SG=sign(H) for interior spins and
SG=sign(H1+H) for spins in the surface planes, respectively]. Note that
for simplicity, we discuss only the case Js=J here.

While this extension of the cluster algorithm to the case of non-zero
bulk and surface fields is formally exact, discussion of its efficiency is a
rather delicate problem: in fact, if h/kBT is of order unity, pG is also of
order unity and the infinite-range character of this coupling then implies
that huge clusters containing a large fraction of the entire simulation
volume are created most of the time! It is clear that under such circum-
stances the algorithm would be rather inefficient; as in the case of zero field
for a good performance of the cluster algorithm it is necessary that large
clusters are created, but a single large cluster must contain only a negligible
fraction of the total volume in the thermodynamic limit. As a consequence,
one needs h/kBT ° 1. Therefore, in the recent study of Dillmann et al. (125)

where the scaling behavior of the capillary condensation critical point near
the bulk critical point was tested, only a single small value of the surface
field was used, H1=−0.015J, and the corresponding bulk fields typically
were at least an order of magnitude smaller.

Even for these small values of the fields, the performance of the algo-
rithm has deteriorated significantly in comparison with the case without
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any magnetic fields. Typically, one wishes to study systems in a L × L × D
geometry, with periodic boundary conditions in the x and y-directions,
while on the two free L × L surfaces the surface field H1 acts. (125–131) For a
typical choice of linear dimensions, such as (125) D=32, L=128, at the thin
film critical point the correlation time of the magnetization ym is of the
order ym % 280 Monte Carlo steps (MCS) per spin for the above choice of
H1 in the ghost spin cluster algorithm, whereas for a corresponding system
with H1=0, H=0, ym is only a few MCS. Thus, while the gain of the
cluster algorithm in the zero field case compared to the Metropolis
algorithm, (117) where ym > 104 for L=128, is very significant, in the case
with non-zero fields it is only rather modest! This dramatic decrease of the
efficiency of the cluster algorithm with increasing strength of the surface
(and bulk) fields has prevented a study of systems larger than L=128 near
Tcb and the dependence on H1 has also not yet been systematically
explored. (125) For the example mentioned (D=32, L=128), runs of length
of up to 1.2 million MCS were performed, which is a major effort when
one uses a cluster algorithm.

For system parameters where one does not work in the vicinity of
the bulk critical temperature of the Ising model, such as for the
exploration of wetting phenomena, (126–131) the study of the global phase
diagram of capillary condensation (cf. Fig. 10), (131) or the study of
interface localization-delocalization, (15, 132–135) standard single spin-flip
Metropolis (136) or heatbath (117) algorithms were used. Of course, for
interface localization-delocalization and wetting phenomena, the slow
relaxation of the long wavelength (capillary wave-type) interface fluc-
tuations is a serious problem limiting the accuracy that can be reached.
While for the study of interfaces between coexisting phases in the bulk
in the absence of any fields an efficient cluster algorithm has been
proposed, (137) it was not used in the research reviewed here since
problems were foreseen due to the presence of the non-zero surface
fields. Because the second-order interface localization-delocalization
phase transition ultimately falls into the universality class of the two-
dimensional Ising model (see Section 2.3) it is also doubtful to what
extent the interface cluster algorithm would present an advantage very
close to Tc(D).

In order to use available computer resources with the single spin flip
algorithms most efficiently, vectorizing multispin coding algorithms were
used on the supercomputers available at the respective time (a CDC Cyber
205 for the study of critical wetting (129, 130) and capillary condensation, (131)

an IBM ES/9000 for the study of interface localization-delocalization. (133–135)

However, it was also found to be effective to complement these studies on
supercomputers with runs performed on IBM RISC workstations, using
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‘‘multilattice’’ (117) algorithms. (132–135) Nevertheless, it will be clear from the
simulation data that will be presented in the following sections that there is
still a need to have more efficient algorithms. In this context, initial
results, (138) utilizing a combination of the Wang–Landau algorithm (139) with
the ‘‘n-fold way’’-algorithm (140) to efficiently sample the density of states of
the model system seem rather promising.

An important issue for every Monte Carlo simulation is the quality
of the random number generator that is used. (117, 141) In particular, cluster
algorithms at critical points of Ising systems are rather sensitive to correla-
tions among the pseudo-random numbers produced by the random number
generator. (141, 142) For the work using a cluster algorithm, (125) an improved
version of the standard ‘‘R250’’ generator (143) was used, where two genera-
tors [one based on the pair of integers (250, 103) and the other with the
pair (521, 168)] were combined with the logical exclusive OR (XOR)
operation. For the studies with the single-spin-flip algorithm, the standard
‘‘R250’’ generator (143) was judged to be good enough.

We now discuss how phase transitions are located precisely. Depend-
ing on the choice of Js/J, both the wetting transition (126–130) and interface
localization-delocalization (132–135) can be either first-order or second-order
phase transitions, and the capillary condensation transition (Fig. 10) is a
line of first-order phase transitions, ending in a critical point. Only in the
vicinity of this critical point is the first-order transition sufficiently weak
that a finite size scaling based on multihistogram reweighting (117, 120, 144) and
the equal weight rule (117, 145–147) is convenient. Note that one then needs a
three-dimensional histogram P(E, m, m1), E being the exchange energy,
m the total magnetization in the thin film, and m1 the magnetization in the
surface, in order to be able to do reweighting in the full parameter space of
independent control variables (T, H, H1). Hence, the storage requirements
for P are non-trivial. This problem was solved by Dillmann et al. (125) noting
that all measurements of E, m, m1 can be represented by integers, each
integer needing 4 Bytes, and hence one can store the time series of 106

observations with a storage of 12 MBytes, irrespective of the choices of L
and D.

Multihistogram reweighting with respect to the bulk field H is crucial
for the determination of the field Hcoex(T) in the (H, T)plane (cf. Fig. 10)
along which two-phase coexistence occurs T < Tc(D). The ‘‘equal weight
rule’’ (117, 142, 145–147) is then applied: In the space of variables (E, m, m1), the
two phases show up as separate peaks of P(E, m, m1) [or P(m, m1),
respectively, see Fig. 17(a), when one studies an isotherm one can integrate
out E, of course]. These peaks have precisely the same weight at H=
Hcoex(T) while for H ] Hcoex(T) (but not too far away from it) the two
peaks can still be identified but have different weights.
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Fig. 17. (a) Unnormalized histogram P(m, m1) of a thin Ising film with D=32, L=96,
Js/J=1, H1/J=0.015, H/J=0.00028 at kBT/J=4.471, which is close to the two-phase
coexistence line Hcoex(T). (b) Two-phase coexistence line in the plane of variables H/J and
kBT/J for D=28, estimated for four different choices of L from the ‘‘equal weight’’ rule and
indicating the statistical errors: The two vertical lines indicate the error interval of the critical
temperature Tc(D). Note that for finite L the distribution P(m, m1) also has a double-peak
structure for T slightly above Tc(D), as long as L does not exceed the correlation length t, (99)

so there are also simulation data points for T > Tc(D). From Dillmann et al. (125)

With multihistogram reweighting, a small number of simulation points
suffices to generate the curve Hcoex(T) with reasonable precision, see
Fig. 17(b). Since near Tc(D) the free energy differences between the two
phases are very small away from coexistence, the statistical error in the
estimation of Hcoex(T) is not negligible. The systematic errors visible in
Fig. 17(b) [curves for different L do not superimpose within their statistical
errors] is due to the fact that the aspect ratio L/D for the smaller choices
of L was not quite large enough. The estimation of Tc(D) in Fig. 17(b) is
deferred to Section 3.5.

One very simple method to improve the accuracy of the single spin-flip
simulations is the technique of ‘‘preferential surface site selection’’: (100, 101)

for the study of wetting transitions (126–131) and capillary condensation, spins
located in lattice planes directly adjacent to the walls or close to the surface
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are considered with a higher a priori probability for a spin flip than spins
deep in the bulk. In this way one can concentrate most of the statistical
effort into these regions of the system where the largest magnetization
fluctuations occur. Conversely, for the problem of interface localization-
delocalization one samples the lattice points close to z=D/2 most often,
since very good sampling of the slow and sluggish interface fluctuations is
needed. (66, 132–135) In a typical case with ‘‘preferential surface site selection’’
surface sites are visited 10 times more often than sites in the bulk.

At this point, we also mention the quantities that usually are recorded.
The sampling of layer magnetizations m1 and layer energies Un is rather
straightforward, and bulk quantities mb, Ub and surface excess quantities
ms, Us also follow from these profiles,

mn=L−2 C
i ¥ layer n

OSiP, mb=
1
20

C
30

n=11
mn, Ub=

1
20

C
30

n=11
Un (135)

where the specific example of indices quoted for mb and Ub refers to a case
where for D=40 estimates for bulk quantities were extracted from the
inner 20 layers of the thin film. (128) For the case of two equivalent surfaces,
the excess quantities are

ms=
1
2

C
D

n=1
(mb − mn), Us=

1
2

C
D

n=1
(Ub − Un). (136)

Exploiting fluctuation relations we can define layer susceptibilities

kBTqn=L2D 37 1
L2 C

i ¥ n
Si

1
L2D

C
j

Sj
8− mnm4 , (137)

kBTqnn=L2 375 1
L2 C

i ¥ n
Si
628− m2

n
4 (138)

where in Eq. (137) m denotes the total magnetization of the film,
m=(L2D)−1 ; iOSiP.

In the cases of interface localization-delocalization and capillary con-
densation, the total susceptibility of the thin film and the fourth-order
cumulant of the magnetization were also studied,

kBTq=L2D 75 1
L2D

C
i

Si
628− m2, (139)

UL=1 −375 1
L2D

C
i

Si
648;3 75 1

L2D
C

i
Si
62824; (140)
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and we shall see that these quantities are useful for the finite size scaling
analysis to be discussed in the following section. Similarly, the total specific
heat Cv is obtained from an analogous fluctuation formula for the energy,

kBT2Cv=[OH2P−OHP2]/L2D. (141)

While finite size scaling is useful for both second-order and weakly
first-order phase transitions, it is more convenient to locate transitions that
are strongly first-order, and hence show pronounced hysteresis, by ther-
modynamic integration methods. This is done by considering two paths
(1,2) where the temperature is varied from some starting value T0 to the
temperature T of interest while keeping the magnetic fields H (1), H (2) con-
stant. These fields are chosen so that they correspond to phases with dif-
ferent sign of the magnetization, and we wish to locate the transition field
Hc(T) between these two phases. (131) The free energy difference per lattice
site between the two states (T, H (1)) and (T, H (2)) is then (b=1/kBT here,
b0=1/kBT0)

bDF=b0DF0+F
b

b0

DU(bŒ) dbŒ, (142)

where DU(bŒ) is the difference in total energy per lattice site between the
two states at inverse temperature b! One must choose b0 so low (e.g.,
b0J=1.2) that thermal excitations in the reference states can be neglected
and hence DF0 % DU(b0). Free energy differences with respect to these
states, (T, H (1)) and (T, H (2)), can then be constructed,

DF (1)(T, H)=−F
H

H(1)
m (1) dHŒ, DF (2)(T, H)=−F

H

H(2)
m (2) dHŒ (143)

Although the total energy per lattice site clearly is always of order unity,
DU(b) typically is of order 10−2 to 10−1. Recording DU directly we measure
small free energy differences easily and with high accuracy. Correspond-
ingly, Hc(T) could be estimated with a relative accuracy of a few percent or
better. (131)

3.2. Finite Size Scaling Analyses of These Phase

Transitions and Their Difficulties

Finite size scaling analysis of Monte Carlo results for model systems of
statistical mechanics now is a standard tool. (94–99) Hence, we shall assume
the reader is familiar with the basic physics behind this approach and focus
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only on the difficulties which result from the crossover scaling between
different universality classes that we have encountered in Section 2.3.
For example, in the case of capillary condensation Eq. (92) or (97) can be
extended by including the aspect ratio L/D as an additional scaling
variable,

fsing(D, T, H, H1, L) % D−3f̃(D1/nt, L/D, HDD/n, H1DD1/n). (144)

Since for finite L, the free energy and its derivatives are smooth functions
of t=(T − Tcb)/Tcb, it is more convenient to use D1/nt rather than x=D |t|n

as a scaling variable. From Eq. (144), we immediately obtain scaling forms
for the specific heat, the magnetization, the susceptibility, and the fourth
order cumulant of the thin film,

Cv=Da/nC̃(D1/nt, L/D, HDD/n, H1DD1/n), (145)

m=D−b/nm̃(D1/nt, L/D, HDD/n, H1DD1/n), (146)

q=Dc/nq̃(D1/nt, L/D, HDD/n, H1DD1/n), (147)

UL=Ũ(D1/nt, L/D, HDD/n, H1DD1/n). (148)

In the limit L/D Q . the scaling functions C̃, m̃, q̃ and Ũ exhibit true sin-
gularities at values D1/ntc, HcDD/n corresponding to the capillary condensa-
tion critical point Tc(D), Hc(D), but all these singularities are rounded off
for finite L/D. This means that both Cv and q exhibit maxima of finite
height at temperatures Tc

max(D), Tq
max(D) which will be displaced relative to

Tc(D). From Eqs. (145) and (147), one readily predicts (we omit here the
dependence on the variable H1DD1/n which is held fixed, and on HDD/n;
there is a shift of the maximum relative to Hc(D) as well, as already shown
in Fig. 17(b))

Tc
max(D) − Tc(D)

Tcb
D1/n=DT̃c

max(L/D), (149)

Tq
max(D) − Tc(D)

Tcb
D1/n=DT̃q

max(L/D). (150)

The cumulant UL at T=Tc(D) is not a universal constant but rather still a
function of the aspect ratio L/D,

UL(T=Tc(D))=Ũ(L/D) . (151)

One can one expect UL=Ũ(.)=Ug
2d Ising % 0.61 (148) only in the limit

L/D Q .. In Eqs. (149), (150), and (151), the functions DT̃c
max, DT̃q

max and
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Ũ are non-trivial crossover scaling functions. From a related analysis (111)

one can also predict the finite size behavior of the height of the maxima.
One finds for L ± D

Cmax
V 3 Da/n ln(L/D) (152)

qmax 3 D (c/n − c2/n2)Lc2/n2, (153)

and the vanishing of the absolute value of the order parameter at Tc(D) is
also of interest,

O|m − m(Tc(D), L/D Q .)|PT=Tc(D) 3 D (b2/n2 − b/n)L−b2/n2. (154)

Because of Eq. (151), there is no longer a unique intersection point of
the cumulants at T=Tc(D). Figure 18 shows that this is indeed a serious
problem: (125) the cumulant intersections are scattered considerably, and the
associated ordinate value Ug differs considerably from the theoretical
value. (148) Many of these crossing-points still differ from the actual critical
temperature as in the case (125) Tc(D)/J=4.4665(4).

An alternative,widely used recipe to find the critical temperature
involves the extrapolation of the locations of maxima in the specific heat
and susceptibility, or of the cumulant intersection points, versus L−1/n.
Considering the intersection of UL(T) and UbL(T) with a scale factor b > 1,

Fig. 18. Cumulants UL(T) plotted vs. T for D=28 and various choices of L as indicated on
the curves, for thin Ising films on the simple cubic lattice and Js/J=1, H1/J=−0.015. H
follows a path determined from the equal weight rule, as explained in Fig. 17 (for D=28,
Hc(D)/J % 0.000348(3)). The dotted line indicates the theoretical value Ug from Blöte
et al. (148) From Dillmann et al. (125)
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Fig. 19. (left part) Locations of specific heat maxima (Tc
max: diamonds) and of susceptibility

maxima (Tq
max: circles) plotted vs L−1/n for D=8 using the same model as specified in Fig. 18.

(right part) Cumulant intersection temperatures for D=8 plotted vs (b1/n − 1)−1 for L=32
(triangles), L=48 (squares) and L=64 (inverted triangles). In the left part, the dashed curves
show linear fits and the solid curves correspond to the master curves in Fig. 20. From
Dillmann et al. (125)

we can argue (149) that corrections to finite size scaling lead to a shift of
the intersection point that varies proportional to [b1/n − 1]−1 for large b.
Figure 19 shows an attempt to carry out such an extrapolation for
D=8 (125) (other choices of D look similar). In this case Tc

max approaches
Tc(D) in a non-monotonic fashion, and the curve of Tq

max vs. L−1/n is dis-
tinctly non-linear. Fitting asymptotic straight lines to both data sets one
obtains results for Tc(D) that are roughly compatible with each other and
with the extrapolation of the cumulant intersection (Fig. 19). Although the
accuracy of Tc(D) obtained in this way is several orders of magnitude less
than in the case of the bulk three-dimensional Ising model, (94, 116, 150) the
data are accurate enough to allow a meaningful test of the scaling predic-
tions, Eqs. (101).

The consistency of this analysis can be checked further by testing for
the scaling behavior predicted in Eqs. (149) and (150), as demonstrated in
Fig. 20. Here all data points are included for all values of D and L that
have been studied (125) and Tc(D) is chosen such that the best data collapse is
achieved. The plot reveals the non-monotonic variation of the temperature
at which the specific heat has its maximum is an intrinsic property of this
scaling function, describing the system shape effects in terms of the aspect
ratio D/L of the simulation box. The interpolating curves in Fig. 20 are
simple parabolic fits which translate back into the solid lines in the left part
of Fig. 19.
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Fig. 20. Master curves for the temperatures of: (a) susceptibility maxima; (b) specific heat
maxima, for simple cubic Ising thin films with Js/J=1 and a surface field H1/J=0.015
acting on both walls. In each case H is chosen from the equal weight rule (cf. Fig. 17). The
curves are simple parabolic fits. From Dillmann et al. (125)

Fig. 21. Cumulants UL(T) plotted vs inverse temperature for thin Ising films on the simple
cubic lattice for D=8, Js/J=1, H1=−HD=−0.55J, and several choices of L. The arrows
indicate the locations of cumulant crossings of two neighboring lattice sizes. From Binder
et al. (134)
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While in the case of capillary condensation the proximity of Tc(D) to
the bulk critical temperature is intimately linked to the crossover between
two- and three-dimensional critical behavior (and complicates the analysis
of the respective Monte Carlo results), (125) in the case of the interface
localization-delocalization transition one can choose H such that Tc(D) is
well below Tcb, with a correlation length tb at Tc(D) of the order of one
or two lattice spacings, and the crossover towards bulk three-dimensional
critical behavior plays no role. Furthermore, for the ideal antisymmetric
case (HD=−H1) symmetry requires that phase coexistence for T < Tc(D)
occurs at H=0, and hence no uncertainty due to possible inaccuracies in
the estimation of Hc(D) enters. Nevertheless, the data also reveal strong
corrections to finite size scaling, and there is a huge scatter in the cumulant
intersections (Fig. 21). (134) The accurate extrapolation of such locations of
cumulant crossings is difficult, and the same is true for the locations of the
maxima in specific heat and susceptibility (Fig. 22). (134) The final estimate
for Tc(D) suffered from appreciable error, J/kBTc(D)=0.2655± 0.0002,
even for very thin films (D=6) where rather large aspect ratios were
studied (e.g., L/D=256/6). (134) It was possible to obtain a reasonable data
collapse in a finite size scaling plot with 2d Ising exponents (15) only for
D=6 and rather large values of L(L \ 128), as shown in Fig. 23. For
D=8 and D=12, the analogous plots already exhibit rather systematic
deviations from finite size scaling. (15) If corrections to finite size scaling
were negligible, one would expect (94–99, 149) that the absolute value of the
order parameter O|m|P and the cumulant UL(T) would scale as

O|m|P Lb2/n2=m̃(L1/n2t), b2=1/8, n2=1, t=1 − T/Tc(D) (155)

The exponent c2=7/4 arise from the asymptotic behavior of the scaling
function m̃ for t < 0, since (149)

O|m|P 3 `Om2P=(kBTq/L2D)1/2 3 (−t)−c2/2/L (156)

and hence, using hyperscaling in d=2 (b2/n2=1 − c2/2n2) we find that

Lb2/n2O|m|P 3 L−(1 − b2/n2)(−t)−c2/2=(−tLc2/n)1/2. (157)

Noting that the finite size scaling of the cumulant UL(T) near Tc(D) in
d=2 can be written as

UL(T)=Ũ(L/t||) %
t Q 0 Ug − cg(L/t̂+

|| ) t+o(t2), (158)
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Fig. 22. (Upper part) Cumulant crossings Ucross plotted vs L−1 for thin Ising films of thick-
nesses D=6, 8 and 12, Jx/J=1 and H1=−HD=−0.55J. Curves are only guides to the eye.
The arrow indicates an estimate for the universal value Ug of the two-dimensional Ising uni-
versality class. (Lower part) Extrapolations of the temperatures of cumulant intersections,
susceptibility maxima, and specific heat maxima for D=6. The arrow (with error bar) marks
the final estimate of J/kBTc(D), while straight lines indicate possible extrapolations. From
Binder et al. (134)

where cg is another universal constant, we should, in principle, be able to
estimate the dependence of the critical amplitude t̂+

|| (D) on D from the
slope of UL(T) in the plot versus Lt at Lt=0 (Fig. 23(b)). Unfortunately,
the scatter of the data makes such an analysis unwarranted in practice.

It turns out that all these problems with the finite size scaling analysis
of second-order interface localization-delocalization phase transitions can
be traced back to the Ising to mean field crossover alluded in Sections 2.2
and 2.3. A combination of crossover scaling (cf. Eqs. (125)–(134)) with the
above finite size scaling description (15) is then needed. This means that the
order parameter, the susceptibility, cumulant etc. become functions of two
scaling variables (15) t exp(oD/2), L1/nt
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Fig. 23. (a) Log–log plot of O|m|P L1/8 vs. L|t| for a thin Ising film with D=6 and choosing
other parameters as specified in Fig. 22. Data for T < Tc(D) are shown by open symbols, data
for T > Tc(D) by full symbols. The straight lines were fitted using the correct values for the
order parameter and susceptibility exponents (b2=1/8, c2=7/4). (b) Cumulant UL(T)
plotted vs. Lt for D=6. The dashed line has the slope of the scaling function at T=Tc(D)
(i.e., at Lt=0). The solid curve is a guide to the eye only. From Binder et al. (15)

O|m|P =
1
D

exp(oD/4) t1/2m̃̃(t exp(oD/2), L1/n2t)

|||||Q

small t, large L 1
D

exp(oD/16) t1/8m̃̃Œ(Lt)

|Q

t=0 1
D

exp(oD/16) L−1/8 (159)

From reasoning of this type one recognizes that the amplitudes in front of
finite size scaling power laws also vary exponentially with D. Of course,
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t can be eliminated from one of the two scaling variables in Eq. (159), to
yield (15)

O|m|P =
1
D

exp(oD/16) t1/8m̃̃(exp(oD/2), L, Lt)

|Q

t=0 1
D

exp(oD/16) L−1/8m̃̃crit(exp(oD/2)/L) (160)

Similarly, one can argue that the susceptibility at Tc(D), or at the
temperature Tmax where it has its maximum, and the cumulant UL(Tc(D))

Fig. 24. Plot of the scaled susceptibility maximum q −

max (cf. Eq. (161)) and cumulant
(Eq. (162)) vs. the crossover scaling variable exp(ocD/2)/L for D=6, 8 and 12 and all lateral
linear dimensions that were available. Here oc=[tb(1+w/2)]−1 was used. Curves are guides
to the eye only. From Binder et al. (15)
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become functions of a finite size crossover variable exp(oD/2)/L,
i.e.,

q −

max=L2D(Om2P−O|m|P2)/kBTmax

=
1
D

exp(oD/8) L7/4q̃̃max(exp(oD/2)/L), (161)

UL(T)=Ũ̃(exp(oD/2)/L, Lt) |Q
t=0 Ũ̃c(exp(oD/2)/L). (162)

Figure 24 shows that the Monte Carlo data are reasonably consistent with
these conjectured scaling results.

Yet other finite size effects are encountered for first-order interface
localization-delocalization phase transitions. (66) If small enough systems are
studied, such that the free energy barrier separating the phases that coexist
at the first-order transition is overcome sufficiently often in the course of
the simulation to produce meaningful statistics, one can indeed show that
both q −

max and the specific heat maximum Cmax show the expected scaling
with the volume of the system, (66) i.e. (note that the volume is L2D but we
vary L at fixed D)

qŒmax 3 L2, Cmax 3 L2. (163)

An example where this behavior is demonstrated is given in Fig. 25.

Fig. 25. Plot of the maximum [“ ln(O|m|P)/“K]max, with K=J/kBT, vs. L for thin Ising
films with competing wall fields H1=−HD=−0.55J for D=6 and three different choices of
Js/J : Js/J=1.3 (lower curve), Js/J=1.45 (upper curve) and Js/J=1.5 (inset). The theoreti-
cal behavior of second-order transitions in the 2d Ising universality class (3 L) and for a first-
order transition in the inset (3 L2) is indicated by the straight lines. From Ferrenberg et al. (66)
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Fig. 26. Surface-layer susceptibility q1 plotted vs. surface field H1 at Js=J, J/kBT=0.35,
and H=0. The inset shows q−1

1 plotted vs. H1/J on an expanded scale. Several choices of L
are indicated for D=40. The arrow shows the resulting estimate for H1c/J. From Binder
et al. (129)

For the study of wetting transitions, a systematic finite size scaling
analysis has not been attempted. Bear in mind that finite size effects in the
direction perpendicular to the unbinding interface are quite different from
effects in parallel directions (this fact has been demonstrated explicitly for
interfaces between coexisting phases of polymer mixtures confined by
‘‘competing walls.’’) (151) Instead, the strategy that was followed was to
choose rather large but fixed values of D, e.g., D=40 for J/kBT=0.35. Of
course, we cannot rule out the possibility that residual finite size effects
associated with such a value of D are still present and introduce systematic
errors in the results; however, in view of the inevitable, large statistical
errors it would be very hard to analyze such effects. Then, L is varied and
one attempts to identify parameters (large enough L, not too small
H1 − H1c or |H|, respectively) for which finite size effects can be neglected.
Figure 26 shows a typical Monte Carlo data that have been taken for the
study of second-order wetting transitions and indicates the accuracy that
has been reached.

3.3. Critical Wetting with Short Range Forces

In this section, we briefly review the results (126–129) of thin film Ising
models of Eq. (3) studied for H1=HD and various choices of inverse
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temperature K=J/kBT as well as the ratio Js/J between the exchange
constant in the surface planes of the simple cubic lattice and the exchange
constant in the bulk. In the Monte Carlo simulations the system geometry
always was L × L × D with periodic boundary conditions only in x and y
directions. D=40 layers were used for K \ 0.25, (126–128) while closer to the
bulk critical temperature thicker films were studied (D=80 for K=0.23
and D=160 for K=0.226 and K=0.224, respectively; note Kc=
J/kBTcb % 0.22196. (94, 150) The parallel linear dimension L was varied typi-
cally over some range up to L=128 (details are given elsewhere. (128, 129))

Figure 27 shows ‘‘raw data’’ of Monte Carlo simulations where
wetting was studied by varying H1 for Js/J=1 at K=0.25. (126) Initial
states always had all spins pointing up, and the system then evolved
towards a (metastable) equilibrium. Note that for H1 < 0 and H=0 the

Fig. 27. Profile of (a) the layer magnetization mn; and (b) the layer energy Un across a thin
Ising film with H1=HD, for a 30 × 30 × 40 lattice with Js/J=1 and K=0.25, and three
choices of the surface field. The arrows in (a) show the position where Un (part (b)) has
maxima. From Binder and Landau (126)
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stable thermal equilibrium state of the film would have a negative magne-
tization in the bulk, but for large enough D the states with negatively
magnetized surface layers and positive bulk magnetization have long
enough lifetimes to produce meaningful averages in the simulations. (126–129)

For the three choices of H1 shown, the data in the central region (layer
index n in the range 16 [ n [ 25) are independent of H1 and the values of
mn and Un (Fig. 27) in that region agree very well with results obtained for
bulk systems using fully periodic boundaries (so that there are no free
surfaces). For H1=−0.4J the magnetization m1 at the surface is already
slightly negative, but it is quite obvious that these data still belong to the
non-wet regime of the surface. For H1=−0.5J the magnetization at the
surface is already strongly negative, and the magnetization profile exhibits
an inflection point at a location which roughly corresponds to the location
of the maximum of the energy profile. Thus, an interface is present near
each surface, but it is clear that these interfaces are still bound to the
respective walls. Note that m1 > − mb, while for H1/J=−1.0 we find that
m1 < − mb. In this case the energy profile also exhibits a nearly flat region
between the maximum and the wall—the interface is unbound from the
wall, characteristic for a state of wet surfaces. Of course, if we could
simulate the system for sufficiently long, the interfaces would diffuse away
from the walls until they ultimately met in the center of the film and
annihilated each other. In this way the system would reach its stable
thermal equilibrium state with uniformly negative magnetization. Thus, the
Monte Carlo results on the ‘‘wet’’ side of the wetting transition have to be
considered with some precautions: although quantities measured locally on
the surface, like q1 (Fig. 26), look perfectly reasonable both for H1 < H1c

and for H1 > H1c, extrapolation from the non-wet side (Fig. 26) has been
used to estimate the location of the wetting transition most precisely.

Figure 28 tests the theoretical predictions for the behavior of ms

(cf. Eqs. (52), (53) and (118)). Logarithmic variations of ms when approaching
the critical wetting transition from the non-wet side for H=0 (case A) and
when approaching the coexistence curve from the single phase region
(H Q 0) on the wet side of the transition (case B) are clearly seen, as
expected from the theory (cf. Section 2.3). However, the logarithmic laws
tested in Fig. 28 are common to both mean field theories of wetting and
the renormalization group treatment (cf. Eq. (118)). This means that a test
of Eq. (121) is more interesting since the field dependence of q1 at
H1=H1c should include the anomalous exponent n|| (remember n|| % 4 is
expected); (113) see Fig. 29. As a further check, Dm1=m1(H) − m1(H=0) is
included, since Dm1 3 H1 − 1/2n|| would also yield information about n||.
Surprisingly, these data (129) (as well as earlier, less precise, data for
J/kBT=0.25 (127)) gave no clear indication of significant deviations from
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Fig. 28. Surface excess magnetization ms plotted vs. − ln[(H1 − H1c)/J] for Js/J=1,
J/kBT=0.35, H=0 (case A) and ms plotted vs. − ln(H/J) for Js/J=1, J/kBT=0.30,
H1/J=−1.0 (case B). For case A, H1c/J % − 0.89, and for case B, H1c/J % − 0.77. From
Binder et al. (127)

mean field theory but were compatible with n||=1. Note that for
H/J [ 0.002 the slow onset of a crossover to a different power law is not
ruled out (one would expect a much flatter curve for q1 and a correspond-
ingly steeper variation of Dm1 if n||=4, namely q1 3 H−1/8, Dm1 3 H7/8!),
and it has been suggested that the critical region where n|| can ultimately be
seen is extremely narrow. (73–76) Another possibility, which the Monte Carlo

Fig. 29. Surface layer susceptibility q1 (upper part) and excess magnetization Dm1=
m1(H) − m1(0) (lower part) on a log–log plot vs. bulk field at H1=H1c, Js=J, J/kBT=0.35.
From Binder et al. (129)
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data cannot rule out either, is that fluctuations could turn the wetting into
a weakly first order transition (63)—however, the Monte Carlo data give no
evidence of such behavior. At this point, it seems fair to say that the reason
why the Monte Carlo simulations were unable to verify Eqs. (116)–(121) is
not definitely known. It is possible that the ‘‘single-coordinate’’-capillary
wave Hamiltonian, Eq. (49) must be replaced by the more complicated
‘‘two collective coordinate’’-theory, Eq. (89). Although this does not seem
to change the final result for n||, it does suggest that the asymptotic regime
for this fluctuation-dominated behavior is very small. Interestingly, a recent
experiment where critical wetting with short range forces could be realized
in a system, (152) where in a liquid binary mixture (methanol and alkanes)
the wetting transition was tuned to occur very close to Tcb, gives only
evidence for mean field behavior.

Fortunately, the Monte Carlo studies were rather successful in their
attempts to check the various predictions made by Nakanishi and Fisher (13)

about the behavior of the wetting phase diagram near the bulk critical
point (Fig. 4). First of all, these verified that for the sufficiently strong
surface exchange enhancement first-order wetting indeed occurs. Figure 30
presents an example. (128) The wetting transition is clearly of first order for
Js/J \ 1.25, while the wetting tricritical point is close to Js/J=1.2. This
conclusion is corroborated by an analysis of ms, Us and q11 as well. (128)

From such studies the locus of tricritical wetting transitions (Fig. 31) as
well as the associated critical field (Fig. 32) could be estimated. (129) As
predicted (cf. Eq. (115)), the line of tricritical wetting transitions for
T Q Tcb indeed extrapolates towards the surface-bulk multicritical point. (100)

The singular variation near that point seen in Fig. 31 is compatible with

Fig. 30. Surface layer magnetization m1 plotted vs. H1/J at J/kBT=0.25 and several values
of Js/J as indicated. Arrows indicate the negative value of the bulk magnetization, − mb.
From Binder and Landau. (128)
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Fig. 31. Projection of the surface phase diagram onto the plane of variables Js/J and
J/kBT, exhibiting the line of tricritical wetting transitions, separating the region of first-order
wetting (above this line) from second-order wetting (below this line). The tricritical wetting
line ends at J/kBTcb in the so-called ‘‘special transition’’ (or ‘‘surface-bulk multicritical
point,’’) and at lower temperature it ends at the roughening temperature TR, where layering
transitions replace wetting. (14) From Binder et al. (129)

Eq. (115), with a crossover exponent f close to 1/2 (f % 0.45 gives the
‘‘best fit,’’ (129)) but an accurate estimation is precluded by the inaccuracy
with which the surface exchange enhancement Jsc/J at the ‘‘special tran-
sition’’ is known. (100–103) Figure 32 shows that the critical fields H1c at
the critical and tricritical wetting transitions are also compatible with
the expected power laws, H1c 3 (1 − T/Tcb)D1 and H1t 3 (1 − T/Tcb)D

SB
1 as

Fig. 32. Log–log plot of the temperature dependence of the critical field H1c at the critical
wetting transition for Js/J=1 (upper part) and at the tricritical wetting transition (lower
part). Dashed and solid lines show possible power law fits and the corresponding (effective)
exponents that can be extracted from these Monte Carlo data. From Binder et al. (129)
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predicted in Eq. (114). The exponent estimates for D1, DSB
1 that one can

read off from Fig. 32 agree with expectations (7, 8, 100–104) to within a few
percent.

3.4. Interface Localization-Delocalization in

Ising Models

We first focus on Monte Carlo results for the case Js/J=1, where the
corresponding wetting transition in the semi-infinite nearest-neighbor Ising
model is of second order and occurs for H1/J=0.55 at J/kBTw(H1) % 0.25
(cf. Section 3.3). As a typical example of the ‘‘raw data’’ from Monte Carlo
simulations of the perfectly antisymmetric model (HD=−H1), Fig. 33
presents data for the layer energy Un and layer susceptibility qnn for D=20,
for both T > Tc(D) and T < Tc(D) (134) (order parameter profiles mn and
layer susceptibility qn for this choice of D can be found in the same
reference, (134) along with data for other choices of D). Note that within the
accuracy of this study, Tc(D=20) and Tw were hardly distinguishable,
J/kBTc(D=20)=0.2475 ± 0.0015. For T > Tcb, these profiles are essen-
tially flat in the center of the film, while near the walls there is an inhomo-
geneity which decays proportional to exp(−z/tb) when z is the distance
from the wall, and tb the correlation length in the bulk. For Tc(D) <
T < Tcb, however, the profiles develop a clear peak in the center of the film,
resulting from the presence of a fluctuating interface there, which separates
the domain with negative magnetization (for z < 0) from the domain with
positive magnetization (for z > 0). It is also obvious that for T > Tc(D) the
profiles are symmetric around z=D/2, which is the average position of the
(delocalized) interface.

We recall that the system for Tc(D) < T M Tcb is in a ‘‘disordered
phase’’ only with respect to the symmetry-breaking interface localization/
delocalization transition occurring at Tc(D), where a spontaneous magne-
tization appears in the film as a whole (Fig. 6). Already at Tcb a rounded
transition to the layered structure of two oppositely oriented domains,
separated by an interface parallel to the walls, has occurred.

The picture is very different for T < Tc(D). Now the symmetry around
z=D/2 is clearly broken, and in Fig. 33 the interface is bound to the right
wall of the film. Of course, for the strictly antisymmetric case (H1=−HD)
the situations with the interface bound to the left wall and the right wall
are precisely equivalent and degenerate. In Fig. 33, the initial condition was
chosen such that all spins pointed down in all layers except the layer n=20
where the spins pointed up. The peak position OzmaxP of quantities such
as qnn increases smoothly from z=D/2 (at T=Tc(D)) to larger values
(slightly below z=D) as the temperature decreases.
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Fig. 33. Profiles of the layer energy Un/J (a, b) and the layer susceptibility qnnJ (c, d)
plotted vs. layer number n, for thin Ising films of thickness D=20 layers, Js/J=1,
H1/J=−HD/J=−0.55, and several inverse temperatures J/kBT, as indicated. Parts (a, c)
refer to T > Tc(D) % 4J/kB, parts (b, d) to T < Tc(D). Curves through the simulation data are
guides to the eye only. From Binder et al. (134)

While the position of the peaks of qnn (or qn) in Fig. 33 is a good
estimate of the position of the interface, the width of these peaks should
not be associated with the intrinsic width of the interface profile: the mean
field estimate for the intrinsic width 2tb of the interface would only be
about 2 lattice spacings, while the width of the peaks in Fig. 33(c) and (d) is
much larger. In fact, this width depends crucially on the film thickness D,
as will be treated in detail below, and can (at least crudely) be accounted
for in terms of capillary wave theory.
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Fig. 33. (Continued)

As was discussed in Sections 2.2 and 2.3, the interface localization-
delocalization phase transition can be viewed as a transition belonging
ultimately to the universality class of the two-dimensional Ising model.
Thus, plotting the energy of the thin film vs. J/kBT (Fig. 34a), one would
expect singular behavior in the slope of the E vs. T−1 curves at T=Tc(D),
reflecting the logarithmic divergence of the specific heat. However, Fig. 34
(a) reveals that within the accuracy of the study (134) reviewed here, hardly
any anomaly could be detected. This finding does not mean that the
expected logarithmic divergence of the specific heat is truly absent—the
singularity is weak in the sense that the critical amplitude is very small,
moreover there is very strong finite size rounding. This is demonstrated in

Monte Carlo Studies 1481



more detail for D=6, which is the most favorable case for observation of
the Ising-like critical behavior, as was argued in Section 2.3. on the basis of
a crossover scaling analysis. But as Fig. 34(b) shows, even for a film as thin
as D=6, both the peaks of q’ and C are completely wiped out when linear
dimensions L=32 or L=64 are chosen. For larger values of L, the peaks
of q’ and C sharpen, as expected, but the statistical errors simultaneously
become very large, making a qualitatively reliable analysis rather difficult,
even in this case. The restriction to L \ 128 is needed to allow verification
of Ising behavior in a finite size scaling analysis, (15) cf. Fig. 23.

In the following, we focus on the behavior of the disordered phase, in
the temperature region T > Tc(D) but below the bulk critical temperature.

Fig. 34. (a) Internal energy per spin E/J of thin Ising films of thickness D with Js/J=1,
H1=−HD=−0.55J plotted vs. inverse temperature for four film thicknesses. Arrows show
the estimates for the critical temperatures Tc(D) obtained from the finite size scaling analysis.
All data shown are for linear dimension L=128 in the directions parallel to the surfaces of
the film. (b) Susceptibility qŒJ=L2D(Om2P−O|m|P2) J/kBT (left part) and specific heat C/kB

(right part) of thin Ising films of thickness D=6 plotted vs. J/kBT, including L from L=32
to L=256. From Binder et al. (134)
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The system is then locally ordered, with two domains of opposite magneti-
zation coexisting in the system separated by an interface which can fluc-
tuate more or less freely around its average position in the center of the
thin film. (15, 16, 59) For large D the effective potential which favors the inter-
face being located at z=D/2 is very weak, and displacing the interface
homogeneously to the left or the right of this position is almost like a ‘‘soft
mode.’’ This property causes anomalously large response functions. In fact,
both the total susceptibility of the thin film and the maximum value qmax

reached by the layer susceptibility (in the center of the film for T > Tc(D),
cf. Fig. 33(c)) increase exponentially with film thickness D. such behavior is
qualitatively consistent with the phenomenological analysis of Sections 2.2
and 2.3, (cf. Fig. 35).

Since theory has predicted (cf. Eq. (82)) that the critical amplitude of
the susceptibility scales as exp(oD/2), it is of interest to analyze the quan-
tity ln(qmax

nn )/D to obtain an estimate for o/2. Figure 36 shows that for
D \ 12 this quantity, when plotted against D, indeed levels off, (134) but the
values of these plateaus disagree with the expected values (2tb)−1

nn obtained

Fig. 35. Semi-log plot of the total susceptibility qtotJ=L2DOm2P/kBT (a) and the layer
susceptibility (qmax

nn )sym, symmetrized with respect to the center of the film, plotted vs. the
film thickness D at various temperatures T above the wetting temperature Tw(H1), for
H1=−HD=−0.55J and Js=J. Solid lines indicate an exponential variation. The broken
curve in (a) is only a guide to the eye (note that the data point at D=28 may suffer both from
systematic errors due to the smallness of L and insufficient sampling time). From Binder
et al. (134)
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Fig. 36. Plot of ln(Jqmax
nn )sym/D vs. D, for thin confined Ising films with Js/J=1,

H1=−HD=−0.55J, and various temperatures in the range Tw < T < Tcb. Broken straight
lines show the predictions of the corresponding asymptotic straight lines from the mean field
theory of Parry and Evans, (59) namely (2tb)−1, using estimates from the series of Liu and
Fisher (153) for tb. From Binder et al. (134)

using estimates for the bulk correlation length tb from series expan-
sions. (153) This discrepancy is analyzed in Fig. 37 in more detail, where
Monte Carlo data (154) for (2tb)−1 are also included to emphasize that this
discrepancy is not due to problems with the accuracy of the series
expansions. However, if one adopts the result of Parry et al. (86–91)

(cf. Eqs. (89)–(91)) that the characteristic perpendicular length scale is
effectively renormalized by a factor (1+w+Dw

2 ), where Dw near Tw can be
neglected, one concludes that o/2 should not be (2tb)−1 but rather

o/2=[tb(2+w)]−1. (164)

Figure 37 shows that Eq. (164) is in reasonable agreement with the
Monte Carlo data. (15) This choice for o was then also used in the crossover
scaling analysis (Fig. 24); use of o=t−1

b in this crossover plot produces
significantly worse data collapse. (15) Figures 36 and 37 hence constitute the
first evidence that the extension of capillary wave theory (cf. Eq. (49)) from
its simple one-collective-coordinate version to the two-collective coordinate
description (89) is practically significant. Further evidence for Eq. (164)
came from simulations of models for polymer mixtures (155) to be reviewed
in Section 3.6.

Lastly, we discuss the problem of interpreting the width of the inter-
face profile between coexisting phases in this regime, Tw < T < Tcb, where
interface displacements show ‘‘soft mode’’ behavior. For short range
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Fig. 37. Plot of the inverse length scale o/2 vs. J/kBT. Full dots represent estimates of
(2tb)−1, tb being the true correlation range in a lattice direction, obtained from the leading
term of the Pade approximant to the low temperature series analysis of Liu and Fisher
(LF). (153) Open squares are corresponding Monte Carlo estimates of Hasenbusch and Pinn (154)

(HP), while open circles are the direct estimates of Binder, Landau, and Ferrenberg (BLF) (134)

extracted from ln(qmax
nn )/D, as shown in Fig. 36. The dash-dotted curve shows the suggested

formula of Parry et al. (86–91) that o/2 % [tb(2+w)]−1, where w % 0.86 (113) was used. Arrows
(with error bars) at the abscissa show location of Tc(D) for D=12, 8, and 6, respectively.
From Binder et al. (15)

potentials between the walls and the interface, as considered throughout
this article, there is a scaling law for the interfacial width (134, 151, 156, 157)

w2=w2
0+

kBT
16s

oD+const, (165)
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where w0 is the ‘‘intrinsic width’’ of the interface, and the additive constant
is related to the short wave-length cutoff in the capillary wave spectrum
and parameters of the effective Hamiltonian, Eq. (61). Since this constant is
hard to estimate quantitatively, it often is neglected. (156) This is legitimate
for large enough D. Figure 38 shows, however, that in the thin Ising films
significant interface broadening does occur in the range from D=6 to

Fig. 38. Magnetization mn in the nth layer of an Ising L × L × D lattice, n labeling the lattice
planes in z-direction, at J/kBT=0.240 (T/Tcb % 0.9236). The abscissa scales refers to the case
D=20; other values of D are plotted such that the profile mid-points coincide. Arrows show
the values ± mb. Observed widths w are quoted in the figure. (b) Log–log plot of w versus D,
including data from part (a) and analogous data for J/kBT=0.232 (i.e., T/Tcb=0.9554).
From Kerle et al. (156)
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D=40, and the asymptotic power law w 3 `D holds down to such thin
films as D=8. Thus the ‘‘squeezing’’ of the intrinsic profile of the interface,
Fig. 14, which should also be present in Fig. 38 since for D [ 8 the magne-
tization profile mn no longer reaches the bulk values ± mb for n=1 and
n=D, affects only very thin films.

We briefly sketch the arguments that yield Eq. (165). (134, 151, 156, 157) We
start from a convolution approximation to relate the apparent profile
m (app)(z) to the intrinsic profile m int(z − h), h being the interface position,

m (app)(z) % F
+D/2

−D/2
dh P(h) m (int)(z − h). (166)

For simplicity, the intrinsic profile is taken as the standard tanh-profile
between coexisting bulk phases (i.e., the ‘‘squeezing effect’’ mentioned
above is neglected) with the coordinate origin chosen to be in the center of
the thin film,

m (int)(z)=mb tanh(z/w0) % mb erf[z `p/(2w0)]. (167)

Assuming then, consistent with Eq. (70), that P(h) is a Gaussian,

P(h)=[2pOh2P]−1/2 exp[ − h2/2Oh2P], (168)

we obtain

w2 % w2
0+

p

2
Oh2P=w2

0+
kBT
4s

ln(t||qmax), (169)

where in the last step we equate Oh2P with the fluctuation O(dl)2P obtained
in Eq. (74). Using t|| 3 exp(oD/4), see Eq. (84), we obtain Eq. (165). This
equation is in almost quantitative agreement with the Monte Carlo results
for a range of temperatures, (156) showing once more the self-consistency of
this analysis.

3.5. Capillary Condensation

In an early simulational study of capillary condensation in the Ising
(lattice gas) model, (131) emphasis was not on the vicinity of the critical point
Tc(D) and Hc(D) but instead on the behavior of the model at temperatures
distinctly below criticality. Rather strong surface fields (H1/J=HD/J=
−0.75 or − 0.25, respectively) were chosen in order to have a situation
where (in the corresponding semi-infinite system) a wetting transition
occurs at temperatures distinctly below the bulk critical region.
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In the following we review the most pertinent findings of this study,
also using a ‘‘language’’ appropriate to the lattice gas interpretation of the
Ising model, i.e., transforming the spin variable Si= ± 1 to a density vari-
able ci=0, 1 according to ci=(1 − Si)/2. Then the local average density in
the n th layer parallel to the wall is denoted as rn=OciPi ¥ n. Depending on
the initial condition for the Monte Carlo runs, the confined fluid film is
either a high density liquid or a low density gas with some rather strong
density enhancement near the walls (Fig. 39). Although in the case shown
for D Q . and chemical potential m Q mcoex the surface would be wet, i.e.,
the interfaces separating the wetting layers from the bulk should be
unbound from the walls, the interface is still centered at the layer n=2
which is immediately adjacent to the wall. Thus for small D (and for non-
zero values of m − mcoex of interest, where the gas phase in the thin film
geometry is still stable) the wetting phenomena are completely rounded off.
However, the tendency to form wetting layers causes pronounced asym-
metry between the profiles of the two coexisting phases (Fig. 40), and this
asymmetry is also seem in the corresponding isotherms (Fig. 41) where the
total density is plotted as a function of the chemical potential difference.
From the pronounced hysteresis seen in these curves it is clear that accurate
location of the transition can only be achieved from a knowledge of the
free energies of the two phases obtained from thermodynamic integration
methods, as described in Section 3.1. A particular consequence of the

Fig. 39. Density profile rn (left part) and energy profile En (right part) for a capillary of
thickness D=24 at kBT/J=4.0, for the case H1/J=−0.75, and several choices of the bulk
field H/J=(mcoex − m)/(2J) [Note that in the lattice gas model, the chemical potential m at
the coexistence curve is known exactly, mcoex=2qJ, q being the coordination number of the
lattice]. For the corresponding semi-infinite system, kBTw/J=3.30 ± 0.01, i.e., at
kBT/J=0.40 the surface would be wet for m=mcoex. Profiles are symmetric around the middle
of the film, so only layers from n=1 to n=D/2 are shown. Note that solid curves are guides
to the eye only. From Binder and Landau. (131)
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Fig. 40. Layer density profiles rn plotted vs. n for five choices of D and the chemical poten-
tial m chosen for each D to be at exact phase coexistence between a liquid branch (upper part)
and a gas branch (lower part). Parameters Js/J=1, H1/J=HD/J=−0.75 and kBT/J=4.0
were chosen throughout. From Binder and Landau. (131)

asymmetry of the isotherms (note that for a symmetric mixture in the bulk,
considered here, the isotherms are antisymmetric around the point r=1/2,
m=mcoex in the bulk) is that the magnitude of the density jumps in Fig. 41
is much smaller than in the bulk.

From isotherms as shown in Fig. 41 we obtain the phase diagram of
the thin film both in the (T, m) plane and in the (T, r) plane, (131) see
Fig. 42. In the temperature T-field H plane the phase diagram has precisely

Fig. 41. Average density r of a capillary of thickness D=16 plotted vs.the chemical poten-
tial difference, for Js/J=1, H1/J=−0.75, and several temperatures, as indicated in the
figure. The first-order transitions are indicated by the vertical straight lines; metastable states
are shown by broken curves. From Binder and Landau. (131)
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Fig. 42. (a) Phase diagram of a capillary of thickness D=16 for Js/J=1 and
H1/J=−0.75. The broken straight line gives the asymptotic low temperature value of the
chemical potential at which liquid-gas coexistence occurs. Arrows indicate the location of the
bulk wetting transition kBTw/J and the bulk critical temperature kBTcb/J, respectively. Full
dots indicate transitions located from thermodynamic integration. The full curve is a guide to
the eye only. (b) Liquid-gas coexistence curve for a capillary of thickness D=16 and a wall
potential H1/J=−0.75 compared to the bulk coexistence curve (D=.). Arrows indicate
the location of the bulk wetting transition kBTw/J and the bulk critical temperature Tcb. The
‘‘rectilinear diameter,’’ constructed from the liquid density (rl), and the gas density (rg),
(rd=(rl+rg)/2), is shown by the dot-dashed line. Error bars are only shown when they
exceed the size of the symbols. From Binder and Landau. (131)

the shape expected on general grounds (cf. Fig. 10, where the opposite sign
of H1 was assumed, however). For a thin film, e.g., D=16, the second-
order wetting transition at Tw does not cause any anomaly in the phase
diagram; however, the situation should be different for first-order wetting
transitions where a triple point is predicted to occur for large enough D,
when the remnant of the prewetting transition line meets the capillary
condensation transition of the bulk film. (29, 131) Figures 43 and 44 describe
this situation in a schematic way, but no systematic Monte Carlo studies of
the Hamiltonian Eq. (3) are yet available to probe this behavior.

We now turn to a test of the Kelvin equation, Eq. (104), which we
rewrite here in the notation appropriate for a liquid-gas system

mcoex − m=
2
D

Wgs(T, mcoex, H1) − Wls(T, mcoex, H1)
[rl − rg+(2/D)(rls − rgs)]

, (170)

where Wgs, Wls are the surface excess contributions of the grand potential in
the gas (g) or liquid (l) phases, rl, rg are the bulk densities and rls, rgs the

1490 Binder et al.



Fig. 43. Schematic phase diagrams for wetting and capillary condensation in a thin film
lattice gas model i.e., a slitlike capillary. (a) refers to a case where an equivalent semi-infinite
system has a second-order wetting transition at Tw and m=mcoex. The dash-dotted curves show
the capillary condensation phase transition at m=mc(D, T), ending at a capillary critical point
Tcap

c =Tc(D). The model Eq. (3) studied in this section always yields this type of phase
diagram if Js=J. The paths indicated by arrows refer to the corresponding isotherms shown
in Fig. 44. (b) and (c) refer to a case where a semi-infinite system undergoes a first-order
wetting transition at Tw and m=mcoex, as in the model of Eq. (3) for Js > J, cf. Fig. 31. Then
for m < mcoex a transition may occur when the thickness of an adsorbed layer at the wall jumps
from a small finite value to a larger finite value (prewetting), cf. Fig. 44. For thin capillaries
(b) this transition no longer exists since mcoex − mc(D, T) is too large, while for very thick
capillaries a remnant of this prewetting transition persists (c). Full dots denote two-dimen-
sional critical points, open circles show bulk three-dimensional criticality, full squares denote
wetting transitions, and the open square denotes a capillary triple point. From Binder and
Landau. (131)

surface excess densities in the respective phases. From Monte Carlo
data (131) one recognizes (Fig. 45) that the relation mcoex − mc(T, D) 3 D−1 is
indeed very well fulfilled if the surfaces of the capillary are in the non-wet
part of the surface phase diagram (i.e., T < Tw(H1)), while for T > Tw(H1)
pronounced curvature in the plot is present. Expecting that rgs(m) 3

|ln(mcoex − m)| for a wet surface of a semi-infinite system, Binder and
Landau (131) argued that the term − rgs in the denominator of the above
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Fig. 44. Schematic isotherms corresponding to the transitions along the paths shown in
Fig. 43. Cases (a) and (b) plot the density r vs. chemical potential m for a bulk system (full
curves) and a capillary (dash-dotted curves), while (c) shows the variation of the surface excess
density rs of a semi-infinite system for comparison (compare also Fig. 2, lower part). (a) refers
to cases where a prewetting line is not crossed [cf. Fig. 43(a) and 43(b)], while (b) refers to
case (c) of Fig. 43 where an isotherm crosses a prewetting line at mcoex(D, T). Then a transition
from a thin adsorbed film to a thicker adsorbed film occurs at the walls of the capillary, cor-
responding to a jump in the overall density in the capillary from r− to r+. This prewetting
transition does not show up in the average density of a bulk semi-infinite system but only in
its surface excess density rs (c). This quantity also distinguishes non-wet surfaces, rs(mcoex)
being finite, from wet surfaces, rs(m Q mcoex) Q ., cf. Fig. 2. From Binder and Landau. (131)

equation actually should be singular, i.e., − rgs 3 ln D. Hence the leading
correction to the Kelvin equation in the wet regime should be of order
(ln D)/D. This idea is tested in Fig. 46, but a plot of D(mcoex − m) vs.
(ln D)/D gives only a slightly better fit to a straight line than does a plot
vs. 1/D. More precise simulation data over a large range of D would be
desirable to clarify this point. We also note that an alternative but equiva-
lent, and very elegant, formulation of this problem was given by Parry and
Evans (158) who describe the shift of the transition as follows,

mcoex(D, T) − m 3
1

D − 2l[mc(D, T)]
, (171)
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Fig. 45. Plot of the shift of the chemical potential m=mc(T, D) relative to mcoex at the liquid-
gas condensation transition in the thin film versus inverse thickness 1/D of the capillary.
Two temperatures and two choices of the wall potential H1/J are included. In the case
H1/J=−0.75, kBT/J=4.00 the surface of a semi-infinite lattice gas system would be wet,
while otherwise it is non-wet. Error bars are only shown when they exceed the size of the
points. The curve through the open circles is only a guide to the eye to demonstrate the
deviation from the straight line (dashed). From Binder and Landau. (131)

Fig. 46. Plot of D(mcoex − mc(T, D))/2J vs. 1/D (upper part) or (ln D/D) (lower part), for
the nearest-neighbor Ising lattice gas model with kBT/J=4.0, Js=J, and H1/J=−0.75.
From Binder and Landau. (131)

Monte Carlo Studies 1493



where l is the distance of the liquid-gas interface from the wall. The physi-
cal interpretation of this equation is that it is only the thickness D − 2l
available to the gas for condensation that matters. Since ln D, l and rgs are
proportional to each other for large D, this formula also suggests that the
leading correction is of order (ln D)/D.

However, for practically realizable D subleading corrections (of order
1/D) also may be rather important. Such terms occur, e.g., in the mean-
field theory of capillary condensation in type I-superconductors.(159)

To complete this section, we turn to the test of the Fisher–
Nakanishi (24, 25) scaling relations Eqs. (98) and (99) for the shift of the
capillary condensation critical point. Due to the enormous statistical effort
required, a very precise estimation of the critical point for H1/J=−0.75
was very difficult even for films as thin as D=16 (cf. Fig. 42), and because
of this no attempt could be made in the early study (131) to locate the critical
point for larger D. Dillmann et al. (125) reconsidered this problem, but chose
a much smaller surface field (H1/J=0.015) so that they could use a cluster
algorithm (Section 3.1). From the finite size and crossover scaling analysis
already described in Section 3.2, Hc(D) and Tc(D) could be extracted for
4 [ D [ 32; (125) but log–log plots of Hc(D) and Tc(.) − Tc(D) vs. D show
small but significant deviations from linear behavior. Such deviations are

Fig. 47. Plot of − 1/neff (a) and of − [(D − D1)/n]eff (b) vs. 1/D. For further explanations
cf. text. From Dillmann et al. (125)
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to be expected, of course, since the asymptotic regime where corrections to
finite size scaling are negligible has not yet been reached for the range of
linear dimensions used. Thus, better results are obtained by fitting effective
exponents using only three successive thicknesses (D=4, 8, 12; D=8, 12,
16,...; D=24, 28, 32), which can be extrapolated versus 1/D reasonably
well. The results converge nicely towards the theoretical predictions
(Fig. 47), namely − 1/n % − 1.587 and − (D − D1)/n % − 1.75. Very roughly,
the two-dimensional Ising critical behavior could also be verified in the
vicinity of these transition points, but only for the very thin films such as
D=6 and D=8. (125) Studies using larger D, which then would require
substantially larger lateral linear dimensions L for the finite size scaling
analysis, would be very desirable but are clearly very difficult.

3.6. Simulation of a Lattice Polymer Model

The general features of wetting, interface localization-delocalization
and capillary condensation are universal, i.e., they do not depend on the
details of the underlying model but rather on the dimensionality and the
range of interactions. Consequentially, most of the simulation work has
focused on the Ising model due to its computational efficiency. In this sub-
section, however, we shall discuss wetting in binary polymer blends within
the framework of the bond fluctuation model. (160) Being interested in the
universal behavior, we represent the long extended macromolecules by
chains of N coarse grained monomers on a simple cubic lattice. Each
monomer blocks the eight corners of a cube from further occupancy, and
monomers along a chain are connected by one of 108 bond vectors. There
are two species of monomers, denoted A and B. Monomers of the same
type attract each other via a square well potential of depth E/kBT which
extends over the nearest 54 lattice sites, while monomers of different types
repel each other with the same interaction energy. Much is known about
the phase behavior (161, 162) In the following we restrict ourselves to symme-
trical mixtures, i.e., both chains have identical chain length and architec-
ture. The mixture is confined in a thin film by two hard impenetrable walls.
These attract A monomers which are less than 2 lattice spacings away with
an energy Ew( > 0), and repel B monomers in this region with the same
strength. This bond fluctuation model (160, 161) captures the relevant features
of dense polymer mixtures, while retaining the computational advantages
of a lattice model. Many methodological advances in Ising model simula-
tions can be readily applied to the complex fluid mixture. The model can be
simulated in the semi-grandcanonical ensemble (163) by ‘‘flipping’’ the iden-
tity of an entire chain from A to B, or vice versa. The chemical exchange
potential Dm corresponds to a bulk magnetic field in the Ising model.
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Analogous to the Ising model, histogram extrapolation techniques (144) have
been employed to estimate the properties at parameters in the vicinity of the
simulation point, and much of the finite size scaling techniques (e.g.,
cumulant intersection method) carry over from simple lattice models. (164)

The simulation of these complex fluids is computationally much more
demanding than simulating the Ising model. For instance, calculating
the energy change for ‘‘flipping’’ the identity of a whole chain which is
comprised of N monomers, each of which interacts via a square well
potential which extends over 54 lattice sites, is computationally much more
costly than flipping a spin with 6 neighbors on a cubic lattice. Additionally,
the conformations of the chains on the lattice have to be equilibrated.
Nevertheless, these complex fluids offer, at least in principle, particular
advantages:

• In the strong segregation limit interface and surface tensions are
independent of the chain length N, and so the wetting transition also
occurs at a temperature which is independent of N. This is in marked con-
trast to the critical point of the polymer mixture. Due to the low entropy of
mixing, the critical temperature Tc of the bulk increases linearly with N;
hence, the wetting transition temperature is typically lower than the critical
temperature by a factor N and the wetting transition is typically of first
order. Only interface fluctuations then play a role, the bulk phases are
completely segregated into pure A and pure B phases. In the Ising model
this separation is more difficult to achieve because of the roughening
transition at TR/Tc % 0.54.

• Owing to its size, a polymer interacts with many neighbors. This is
quantified by the degree of interdigitation N̄=(rR3

e /N)2, where r=1/16
is the monomer density and Re % 3.05 `N is the chain’s end-to-end dis-
tance for the simulations presented below. Except for the immediate vicin-
ity of the critical point, the phase behavior of the bulk is accurately
described by mean field theory. Moreover, the degree of interdigitation N̄
offers a convenient way to reduce the capillary parameter w, which scales
like 1/`N̄.

In the following we shall focus on the consequences of a strongly first-
order wetting transition on the phase behavior in a thin film.

First Order Wetting. Measuring a strongly first-order wetting tran-
sition via the metastability of a microscopically thin layer of the preferred
phase at the surface might be inaccurate. Rather than determining the
wetting transition temperature, one obtains an estimate for the wetting
spinodal (cf. Eq. (56)). Therefore we determine the location of the wetting
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transition via the Young equation. (1) Let A be attracted by the surface by
a potential Ew > 0. The A-component wets the surface if Ds — sBW −
sAW=sAB, where sAW and sBW are the surface tension of the wall in contact
with the A-rich and B-rich phase, respectively, and sAB is the interface
tension between the coexisting bulk phases. The latter can be measured
accurately in the Ising (149, 165) or polymer models (81, 155) via reweighting
techniques. If the two coexisting phases are symmetric—like in our polymer
model or the Ising model—the difference in the surface tensions sBW − sAW

can be determined very accurately by realizing that Ds equals the difference
of the tension between a surface, which attracts the A component sAW in
contact with an A-rich bulk and the tension of a surface, which attracts the
B component sAW − in contact with an A-rich bulk. This difference can be
accurately measured via thermodynamic integration

Ds=
1

L2 F
Ew

−Ew

dE −

w

Ew(E −

w)
E −

w

(172)

where Ew denotes the interaction between the components and the wall,
and L the lateral system extension.4 If the wetting transition is strongly first-

4 Alternatively, we can determine the free energy difference via simulation in an expanded
ensemble, where Ew is a Monte Carlo variable.

order, the thickness of the B-rich surface layer remains always very thin
(even for E −

w=−Ew), and hence the typical configurations do not differ
strongly along the path of the integration—a fact which makes the method
particularly convenient. If the wetting transition was only weakly first-
order (or second-order) a thick layer of B would gradually build up as we
decreased E −

w to − Ew and the equilibration times would be considerably
longer. In Fig. 48 we exemplify how to locate the wetting transition via the
Young equation. (1) From the intersection of the curves we can read off the
wetting transition temperatures for different strengths of the surface
interactions. The fact that the curves intersect at a finite angle indicates
first-order wetting transitions. With decreasing strength of the surface
interactions, the wetting transition temperature increases towards the criti-
cal temperature of the bulk and becomes weaker; but for all values Ew

investigated, we find first-order transitions.

Phase Diagram in Thin Films. The phase diagram of a thin film
with symmetric and antisymmetric surface fields is presented in Fig. 49 and
compared to the bulk phase behavior. The pronounced influence of the
first-order wetting and the concomitant prewetting can be readily observed.
In the vicinity of the critical points, the binodals have been extracted from
the Monte Carlo data (65, 155) via a finite size scaling analysis (cf. Section 3.2).
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Fig. 48. Locating the wetting transition via the Young equation. The solid line with circles
represents the interface tension between the coexisting phases as a function of the scaled
inverse temperature E/Ec=Tcb/T. The squares indicate the difference in the surface free energy Ds.
Different curves correspond to different surface interactions Ew (decreasing from top to
bottom). The dashed horizontal lines correspond to the simple estimate Ds=4rEw, which
ignores the possibility of an enrichment layer and packing effects of the polymer fluid. From
the intersection points we accurately estimate the wetting transition temperature. From Müller
and Binder. (155)

Fig. 49. Phase diagram of a binary polymer blend in the bond fluctuation model with chain
length N=32. The upper curve shows the binodals in the infinite system, the middle one cor-
responds to a thin film of thickness D=48 % 2.8Re and symmetric boundary fields Ew=0.16,
which both attract species A. The lower curve corresponds to a thin film with antisymmetric
surfaces. The arrow marks the location of the wetting transition as located via the Young
equation. Full circles indicate critical points, open circles and dashed horizontal line denote
the triple point. The inset presents the phase diagram as a function of temperature and
exchange potential. Circles mark critical points, and the diamond indicates the wetting transi-
tion temperature. On the scale of the figure it is indistinguishable from the triple temperature
of the film. Note that the wetting transition occurs at low temperatures Tw/Tcb=0.2. From
Müller and Binder. (65)
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The coexistence value of the chemical potential has been determined via the
equal weight rule. (146)

In the case of symmetric surface fields, the critical point is shifted to
lower temperatures and larger composition of the A-component. This is
qualitatively similar to the behavior of the Ising model. Since a single phase
diagram costs about 50,000 h of single processor CPU-time on a CRAY
T3E, we have not attempted to study the dependence of the critical point of
the film thickness or the strength of the surface fields but instead have
focused on the signature of the first-order wetting transition in a thin film.
For symmetric surface interactions the A-poor binodal exhibits a ‘‘bulge’’
in the vicinity of the wetting transition temperature. In the A-poor phase
there is a thin enrichment layer of A at the wall, while the B component
prevails in the middle of the film. The composition profile across the film is
similar to Fig. 40, which shows the corresponding data for the Ising model.
As we increase the temperature and pass through the wetting transition
temperature, the AB interface is repelled from the surface and this gives rise
to the change in curvature of the A-poor binodal. The coexistence chemical
potential as a function of temperature is shown in the inset of Fig. 49. The
repulsion of the AB interface and the growth of the A-enrichment layer
manifest themselves in a change of the temperature dependence of the
coexistence chemical potential. For the film thickness considered in
the Monte Carlo simulations, the coexistence curve does not intersect the
prewetting line. If the film were thicker, the phase diagram would exhibit a
second two-phase region, which would correspond to the coexistence of a
thin and a thick layer of A on the prewetting line (cf. Fig. 43). (29, 166) While
it is computationally too expensive to explore this by Monte Carlo simula-
tions, this has been corroborated by self-consistent field calculations (155) for
our polymer model. As Nakanishi and Fisher (24, 25) have pointed out, the
wetting transition of the semi-infinite system is completely rounded by the
finite thickness of the film, but the prewetting transition can give rise to a
phase transition in thin films. Indeed, if the wetting transition is second-
order (cf. the results for the Ising model in Fig. 41(b)), there is no prewet-
ting line and the binodals in a thin film do not exhibit a signature of the
wetting transition.

The phase diagram for antisymmetric surface fields is also shown in
Fig. 49. At high temperatures enrichment layers of the components are
gradually built up at the corresponding surfaces and an AB interface,
which runs parallel to the surfaces, is stabilized in the middle of the film.
Lateral phase separation occurs only below the prewetting critical temper-
ature. If the wetting transition is of first order and the film thickness
sufficiently thick (cf. Section 1) the interface localization-delocalization transi-
tion is of first order and there are two two-phase coexistence regions, which
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merge below a triple point. Below the triple temperature, there is a single
two phase region. The simulations corroborate the qualitative features of
the phenomenological considerations of Section 1.

In experiments, the idealization of strictly symmetric or strictly anti-
symmetric surface interactions is difficult to realize. Hence, one might ask
the question which degree of asymmetry is permissible without losing the
features of capillary condensation or interface localization-delocalization.
The crossover between the two qualitatively different types of phase
diagrams is also interesting in itself. Unfortunately, there are no Monte
Carlo data from the Ising model or the polymer model available and we
resort to mean field calculations for the polymer model.

Fig. 50. Phase diagram of a binary polymer blend for D=2.6Re within mean field approx-
imation. (a) The binodals as a function of the relative strength of the surface interactions (as
indicated in the key): +1 corresponds to capillary condensation, 0 corresponds to one surface
not having any preference, and − 1 corresponds to interface localization-delocalization.
Circles mark critical points, open symbols and dashed horizontal lines correspond to triple
points. (b) Phase coexistence as a function of the chemical potential and temperature. The
‘‘quasi-prewetting’’ lines for ratios − 0.735 and − 1 and Dm < 0 are indistinguishable, because
they are associated with the surface with fixed interaction. From Müller et al. (21)
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In Fig. 50 we show how the phase diagram depends on the asymmetry
of the surface interactions. The bottom surface always attracts the
A-component of the mixture and the semi-infinite system exhibits a first-
order wetting transition. We tune the interaction of the top surface from
attracting A with the same strength than the bottom to attracting B. As we
reduce the preference of the top surface for species A, the critical point and
the critical composition tend towards their bulk values, i.e., the critical
temperature increases and the critical composition becomes more symme-
tric. The coexistence curve in the T-Dm plane approaches the symmetry
axis. Upon making the top surface attractive for the other component B,
we gradually change the character of the phase transition towards an
interface localization-delocalization transition. In this case there are
enrichment layers of the A-component at the bottom and the B-component
at the top, and the two coexisting phases differ in the location of the AB
interface which runs parallel to the surfaces. As the preferential interaction
of the top surface increases, the critical temperature decreases and the cri-
tical composition becomes richer in A. When the coexistence curve inter-
sects the prewetting line of the bottom surface at Dm < 0, a triple point
forms at which an A-rich phase and two B-rich phases with a thin and a
thick A-enrichment layer coexist. When the bottom surface attracts A with
exactly the same strength as the top surface attracts B (antisymmetric
surfaces), the phase diagram becomes symmetric.

It is interesting to ask how for asymmetric surface interactions, such as
shown in Fig. 50 for a confined polymer mixture, or for an Ising model
with JS > JSC, H1/HD=l, the limit D Q . is approached. No numerical
calculations were performed for this case, but we can mention a plausible
speculation: For D=. one has wetting transition temperatures T (1)

w and
T (D)

w for − 1 [ l < 0, which coincide only for l=−1, while for l Q 0
T (1)

w Q Tcb. When T < T (D)
w , the interface is bound either to the left wall

(z Q 0) or the right wall (z Q D). At T=T(D)
w , a first order interface

unbinding at the right wall (z Q D) occurs, and in the phase diagram the
prewetting line appears. For 0 [ T [ T (1)

w there is a two-phase coexistence
between states of opposite order parameter ( ± mb) in the ‘‘thick’’ film
(D Q .). The part of the same two-phase coexistence line from
T (1)

w < T < Tcb appears discontinuously as the limit D Q . is taken, but is
not yet present in the phase diagram for arbitrarily large but finite D,
because of the rounding of the transition at Tcb (note also that for very
large but finite D there is also a shift of this two-phase coexistence away
from Dm=0 by an amount of the order 1/D in the whole region
0 [ T M T (1)

w . At T (1)
w a second prewetting line occurs in the limit D Q .,

which ends in another prewetting critical point. While this prewetting line
joins at T (1)

w the coexistence line (at Dm=0) for D Q . with a kink, for
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very large but finite D this kink is rounded off, and the bulk two-phase
coexistence (which was at Dm=0 for D Q .) and the two-phase coexis-
tence along the prewetting line join smoothly into a common two-phase
coexistence line, along which the character of the two-phase coexistence
gradually changes from bulk-type to prewetting-type. The end point of this
line (which becomes the prewetting critical point Tpre(1)

c for D Q .) for
finite D is the thin film critical point T (1)

c (D) which differs from the critical
point T (D)

c (D) related to prewetting-type phase separation at the other wall
of the film. For l Q 0 also T (1)

w Q Tcb, of course, and for l > 0 and D Q .

we would have again a wetting transition temperature T (1)
w < Tcb and a

prewetting line Tpre(1)
c , but now on the same side of the line Dm=0 as the

other prewetting line ending at Tpre(D)
c . Irrespective of the sign of l for large

but finite D the bulk transition at Tcb and the wetting transition T (1)
w disap-

pear because of finite size rounding. While T (D)
w changes its character from

a wetting transition into a thin film triple point, Tpre(D)
c for finite D changes

its character from critical prewetting into a thin film critical point T (D)
c .

Note that the asymmetry in the behavior near Tcb for l > 0 and l < 0 has a
simple physical meaning: for l > 0 a phase transition is possible from a
state with no interface to a state with two interfaces parallel to the walls;
for l < 0 there is a single interface parallel to the walls, and, hence, no
phase coexistence is possible.

Finite Size Scaling at Finite Thickness D in the Vicinity of the
Tricritical Interface Localization-Delocalization Transition. Upon
reducing the film thickness, we reduce the critical temperatures for the
antisymmetric film and the two two-phase regions extend over a smaller
temperature range. At a film thickness Dt (cf. Section 2.3), the two critical
points merge and there is a tricritical interface localization-delocalization
transition. For even smaller film thickness the transition is of second order.
This behavior has been studied by Monte Carlo simulations of the bond
fluctuation model, (65) as will be briefly reviewed next.

An example of the behavior of the cumulant Om2P/O|m|P2 of the order
parameter m=fA − fB as a function of the inverse temperature for a thin
film (D % 0.84Dt, cf. Eq. (65)) is presented in Fig. 51. For the limited range
of lateral system sizes L, which are accessible in our simulations, the
cumulants yield a reasonably well defined intersection point around
E/kBT=0.059(1). The value of the cumulant at the intersection point
differs, however, from the universal value of the 2d Ising universality class.
This fact indicates pronounced corrections to scaling. Comparing the
probability distribution of the order parameter (normalized to unit
variance and norm) at our estimate of the critical temperature to the uni-
versal distribution of the 2d Ising universality class, we identify the reason. For
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Fig. 51. Cumulant intersection for a binary polymer N=32 confined into a film with anti-
symmetric surfaces (D=12, Ew=0.16). Our estimate of the critical temperature Ec/kBT=
0.0589(10) is indicated by the double arrow. The horizontal line marks the universal cumulant
value for the 2d Ising universality class. The inset presents the distribution function of the
order parameter at our estimate of the critical temperature, and compares the Monte Carlo
data to the universal distribution of the 2d Ising universality class (circles). From Müller and
Binder. (65)

small lateral system sizes, the probability distribution is not bimodal—like
the 2d Ising curve—but exhibits a third peak at symmetrical composition
m=0. The three-peak structure of the probability distribution is charac-
teristic of the distribution at a 2d tricritical point. If we monitored the dis-
tribution for a small lateral system size (e.g. L=48) only, the distribution
would never resemble the 2d Ising curve but would always show a three
peak structure in the temperature range of interest, i.e., the lateral system
size is so small that it does not exceed the correlation length at the cross-
over from the 2d tricritical to the 2d Ising critical behavior. As we increase
the lateral system size, the concomitant finite size rounding sets in at a
smaller distance from the critical point, the central peak gradually disap-
pears and the distribution function approaches the shape of the 2d Ising
curve. This change gives evidence for the crossover from 2d tricritical to 2d
Ising behavior (cf. Section 2.2 and Fig. 16) and signals the vicinity of the
tricritical film thickness Dt.

The probability distribution of the order parameter is also useful for
locating the tricritical transition. To this end we have extrapolated the
results of different film thickness to a temperature such that the central
peak is a factor 1.2 higher than the outer peaks. This value corresponds to
the behavior of the universal distribution of the 2d tricritical universality
class. (167) The results of this procedure for various film thicknesses are pre-
sented in Fig. 52. For D < Dt the valleys between the three peaks are too
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Fig. 52. Locating the tricritical wetting transition in a binary polymer blend. The probabil-
ity distribution of the order parameter is compared to the universal function of the tricritical
universality class in two dimensions. (167) The film thickness is indicated in the key and the
lateral system size is L=96. The inverse temperature is adjusted such that the central peak
is a factor 1.2 higher than the outer ones. The universal distribution of the 2d tricritical
universality class (167) is shown by the circles. From Müller and Binder. (65)

shallow. The temperature is above the second-order transition. For D > Dt

the valleys are too deep. In this case the transition is first-order and the
temperature is close to the triple point. The configurations between the
peaks are dominated by configurations which simultaneously contain a
thin and a thick enrichment layer at a surface, and their probability is
suppressed by the (albeit low) interface tension between a thin and a thick
enrichment layer. From the data in Fig. 52 we estimate the tricritical film
thickness to be Dt % 0.89Re, Re being the end-to-end distance of the
polymer. Simulations of larger systems confirm that the distribution
approaches the 2d tricritical shape. (65)

Renormalization of the Effective Interface Potential. Fluctua-
tions are important not only in the vicinity of critical points, but also above
the roughening temperature where capillary waves are also present. They
broaden the width of interface profile (cf. Section 2.2), but they also
renormalize the effective interface potential (cf. Section 2.3). By monitoring
the probability P(l) of finding the AB interface a distance l away from
a surface, we can directly extract the effective interface potential
Veff(l)=−kBT ln P(l)/L2+const from the simulations. Results for a binary
polymer blend confined into a thick film with antisymmetric surfaces
slightly above the triple point are presented in Fig. 53. Veff(l) exhibits the
characteristic shape in the vicinity of a first-order wetting transition
(cf. Section 1 and Fig. 5): a free energy barrier separates the minimum close
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Fig. 53. Direct evidence for the renormalization of the effective interface potential via its
dependence on the lateral system size. The effective interface potential is extracted from the
Monte Carlo simulations of a binary polymer blend in a film D=48 at a temperature
kBT/E=14.5 slightly above the first-order wetting transition temperature kBTw/E=14.1. The
inset enlarges the behavior at the minimum close to the surface. From Müller and Binder. (65)

to the surface from the values at large separations between the interface
and the surface. The simulation data have been shifted vertically such that
g vanishes at the minimum close to the surface. Within mean field approx-
imation the interface potential Veff(l) does not depend on the lateral system
size. This is not at all what we observe in the simulations: the free energy
difference between the minima at the surface and at the center of the film
(i.e., at large distances) changes its sign and the minimum close to the
surface becomes broader and shifts to larger distances as we increase the
lateral system size and thereby allow for additional modes of capillary
waves in the simulation box.

The curvature of the minima at the surface and in the middle of the
film are quite different. It imparts a lateral correlation length t|| on
capillary waves (cf. Section 2.2 and Eq. (71)). t|| is much smaller for the
minimum close to the surface than for the minimum at the center of the
film, where it diverges exponentially with the film thickness D. This lateral
correlation length t|| or the lateral system size L act as long wavelength cut-
off for capillary waves. Increasing L we gradually ‘‘switch on’’ capillary
waves, which lower the free energy compared to a strictly flat interface
configuration. When the interface is in the middle of the film, there are
more capillary modes and consequentially the minimum at the center
decreases more than the minimum at the surface. A quantitative com-
parison of the Monte Carlo data with the behavior of an interface in a
harmonic potential corroborates this qualitative explanation. (65)
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4. CONCLUSIONS

In this review, we have focused on the three-dimensional nearest-
neighbor ferromagnetic Ising model confined between two parallel surfaces
a distance D apart, upon which surface fields H1 and HD act. We have
emphasized that this model is a very useful testing ground for theories that
attempt to describe phenomena in confined fluids, e.g., wetting transitions,
interface localization-delocalization and anomalous broadening of interface
profiles, and capillary condensation. We have first presented a tutorial
introduction to the main theoretical concepts, emphasizing in particular
how these phenomena are compatible with the scaling description that
should hold near the bulk critical point of the Ising model and working out
consequences resulting from the theory of finite size scaling.

Wetting and capillary condensation near bulk criticality is a topic that
was pioneered in a series of papers by Fisher and Nakanishi (13, 24, 25) that
provided particular motivation for the Monte Carlo studies (15, 66, 125–135) that
were reviewed here. When the Monte Carlo studies could yield conclusive
results, the scaling scenarios of Fisher and Nakanishi (who predicted the
scaling of the location of a capillary condensation critical point with D (24, 25)

as well as the scaling of wetting transition fields with the distance from a
bulk critical point in a semi-infinite Ising system, (13) etc.) were confirmed.
Of course, the accuracy of the Monte Carlo results is still rather limited,
and extensions of the work reviewed here are still desirable—e.g., studies
of capillary condensation for much thicker films than D=32 lattice
spacings (125) are needed, the surface-bulk multicritical point needs to be
located more accurately, and the associated exponents need to be estimated
more precisely. (100–104) It would also be desirable to locate critical and tricri-
tical wetting transitions still closer to the bulk critical temperature than it
was done by Wansleben et al.; (129) etc.

While such studies—when they become available—will presumably not
reveal fundamental surprises, the situation is quite different, as far as the
theory of critical wetting is concerned. (63, 64, 67–76, 86–91, 112, 113) Since the theory
of critical wetting with short range forces relies heavily on the use of a
capillary wave-type Hamiltonian, cf. Eqs. (49) and (50), and predicts a non-
universal critical exponent n|| (cf. Eq. 117) that depends on a parameter w,
Eq. (91), the first question to be asked is whether or not the starting point
of the description is correct. One obvious uncertainty, the value for the
parameter w for the Ising model, was clarified by Fisher and Wen (113) who
showed that w % 0.86 both at the bulk critical temperature and over a
range of temperatures below it, so n|| % 4 at the temperatures for which
Monte Carlo results are available. Nonetheless, both the simulations (128, 129)

and recent experiments (152) showed no significant deviations from the mean
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field result, n||=1 (cf. Eq. (76)). Another question is, can one really justify
the simple effective potential with a few exponentially decaying terms that
compete with each other (cf. Eq. (76)) for the Ising model? This issue was
considered by Fisher and Jin (63, 64) who suggested that actually one should
have a (weakly) first-order wetting transition in the Ising model. If this
result is true, the phase diagrams shown in Figs. 4 and 31 would need
revision, and the apparent vanishing of the jump in Fig. 30 would need a
different interpretation, namely a crossover from a strong first-order
wetting transition to a very weak first-order wetting transition as Js/J
decreases. Of course, it is always possible that a very weak first-order tran-
sition in a simulation (as well as in experiments!) is mistakenly identified as
a second-order transition. On the other hand, there are no specific predic-
tions of any quantities resulting from the work of Fisher and Jin (63, 64) that
could provide a more critical test of what actually happens. In our view,
this problem deserves more attention both from the theoretical side and
with very accurate simulations.

Parry et al. (86–91) made the particularly interesting suggestion that the
one-collective coordinate description, Eq. (49), needs to be abandoned and
replaced by a two-collective coordinate description, Eq. (89), for the effec-
tive Hamiltonian. It would be very desirable to explore the consequences
that this description implies for the Monte Carlo study by more detailed,
accurate simulations. Encouragingly, the result that one can take the effect
of the coupling between the two collective coordinates l1, l2 in Eq. (89) into
account approximately by using Eq. (49) with a renormalized potential,
where the decay constant o=t−1

b in Eq. (50) is replaced by o=
[tb(1+w/2]−1 (cf. Eq. (164)) has been confirmed by simulations for both
Ising models (15) and models of polymer mixtures. (155) However, it seems that
Eq. (89) does not produce any change in the exponent n|| or its dependence
on w, (76, 91) so at this point it seems as though the only possible reconcilia-
tion between simulations (and experiments) on critical wetting with short
range forces with the corresponding renormalization group theory (67–76)

would be if the asymptotic critical region were so narrow that it has been
reached neither in simulation (127–129) nor experiment. (152)

Thin Ising films with competing walls, H1=−HD are also very
interesting. Theory predicts (16, 59, 60) that there is a phase transition that
converges to the wetting transition temperature Tw as D Q ., unlike the
capillary condensation critical point (observable e.g., for H1=HD) Tc(D)
where Tc(D) Q Tcb as D Q .. This transition was predicted to be either
second-order (16, 59) or, depending on the parameters, first-order. (60) Indeed
all these cases have been found in Monte Carlo simulations of both Ising
models (66, 132–134) and models for symmetrical polymer mixtures. (65) A par-
ticularly interesting consequence of these studies is the prediction that a
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system that undergoes first-order wetting as well as first-order localization-
delocalization phase transition in thick films may have second-order inter-
face localization-delocalization transitions if the thickness falls below some
tricritical value Dt. This change in the order of the transition is also
reflected in different topologies of the phase diagram of the thin film, in
particular when (in the case of the mixture) the concentration (rather than
the chemical potential difference Dm, i.e., the magnetic field of the Ising
model) is the independent variable. (17, 18, 65) A generalization to the case
where no particular symmetry between the surface fields holds (cases
intermediate between H1=HD and H1=−HD) has also been presented for
the polymer case, within the framework of the self-consistent field
theory. (21) Although for D Q . the transition temperature (for H1=−HD)
coincides with the wetting transition temperatures Tw, the critical behavior
of the total system has nothing to do with critical wetting. A Ginzburg
criterion (Eq. (88)) shows that this transition indeed satisfies mean field
behavior, while for finite D it belongs to the class of the two-dimensional
Ising model. (15)

While we are not yet aware of any clear experimental evidence for
an interface localization-delocalization phase transition, the anomalous
behavior of fluctuating interfaces confined between competing walls has
been observed for polymer mixtures experimentally. (156, 157) Corresponding
simulations (151) show that the width of the interface depends strongly on the
thickness of the film D, and it is impossible to extract the ‘‘intrinsic width’’
of the interface from the data. This problem of separating the intrinsic
width from capillary wave-type broadening is, in our opinion, a very
general and unsolved problem that occurs for all types of interface pro-
files. (30, 61, 80–82) It is related to the fact that it is unclear in which way short
wavelength capillary waves crossover to the bulk-like excitations on the
scale of the bulk correlation length tb (in a crude and doubtful way this
crossover is simply taken into account via a cutoff at large wavenumbers in
the capillary wave spectrum.) (82)

Finally, we emphasize that the present review has not treated any
work that uses long range forces due to the walls, although this case would
clearly be very important for the understanding of experiments. (4–6) For the
Ising model with short range forces on the walls, we have restricted atten-
tion to the case of d=3 dimensions and have disregarded the rich literature
on wetting in d=2 (e.g., refs. 168–172) and on thin (quasi-one-dimen-
sional) Ising strips (e.g., refs. 173 and 174). In the 2d case, fluctuation
effects are much more important, and mean field theories that were men-
tioned earlier are no longer a reliable guide to the understanding of wetting
and related phenomena. Nevertheless, due to the availability of exact solu-
tions (168, 170) and powerful transfer matrix methods (e.g., ref. 173) a rather
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satisfactory phenomenological understanding of the two-dimensional case
is in fact available. In particular, the interpretation of the interface in the
2d Ising model at low temperatures as a contour that behaves like a self-
avoiding walk (171) has provided very useful insight into all these phenom-
ena. Also, in this case there is no roughening transition at nonzero tem-
peratures, and one can calculate the coupling constant s of the capillary
wave Hamiltonian exactly and show that in d=2 it differs in general from
the interfacial free energy fint/kBT: while for T Q 0 fint Q 2J one finds
that (62, 171) this ‘‘interface stiffness’’ kBTs Q ..
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